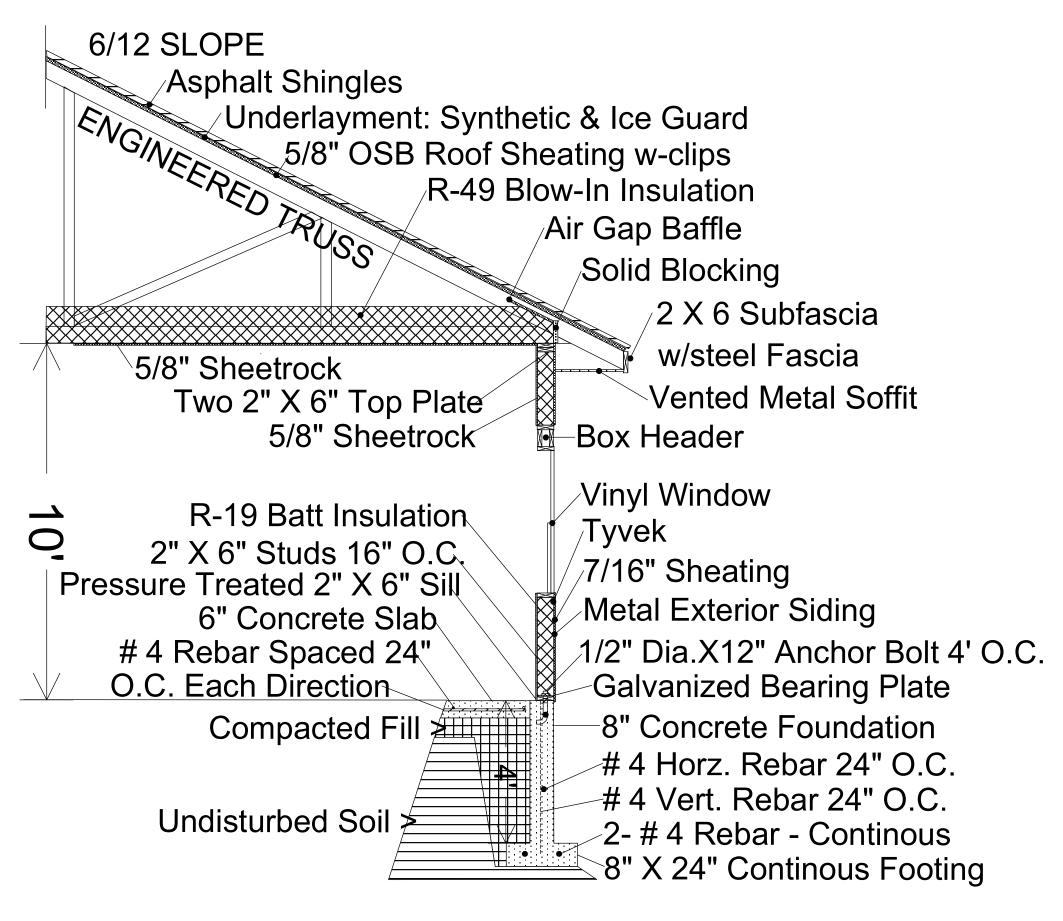
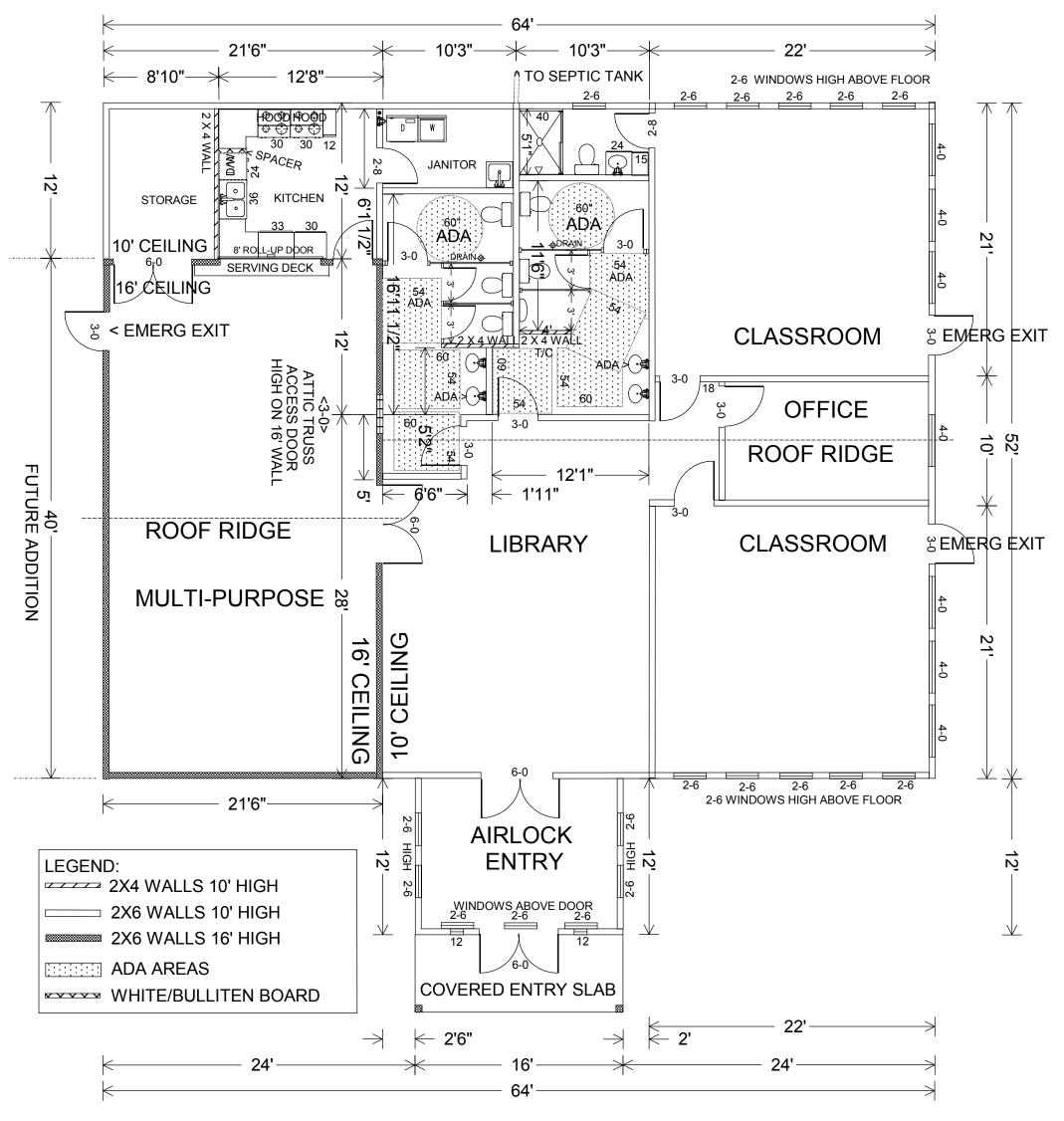
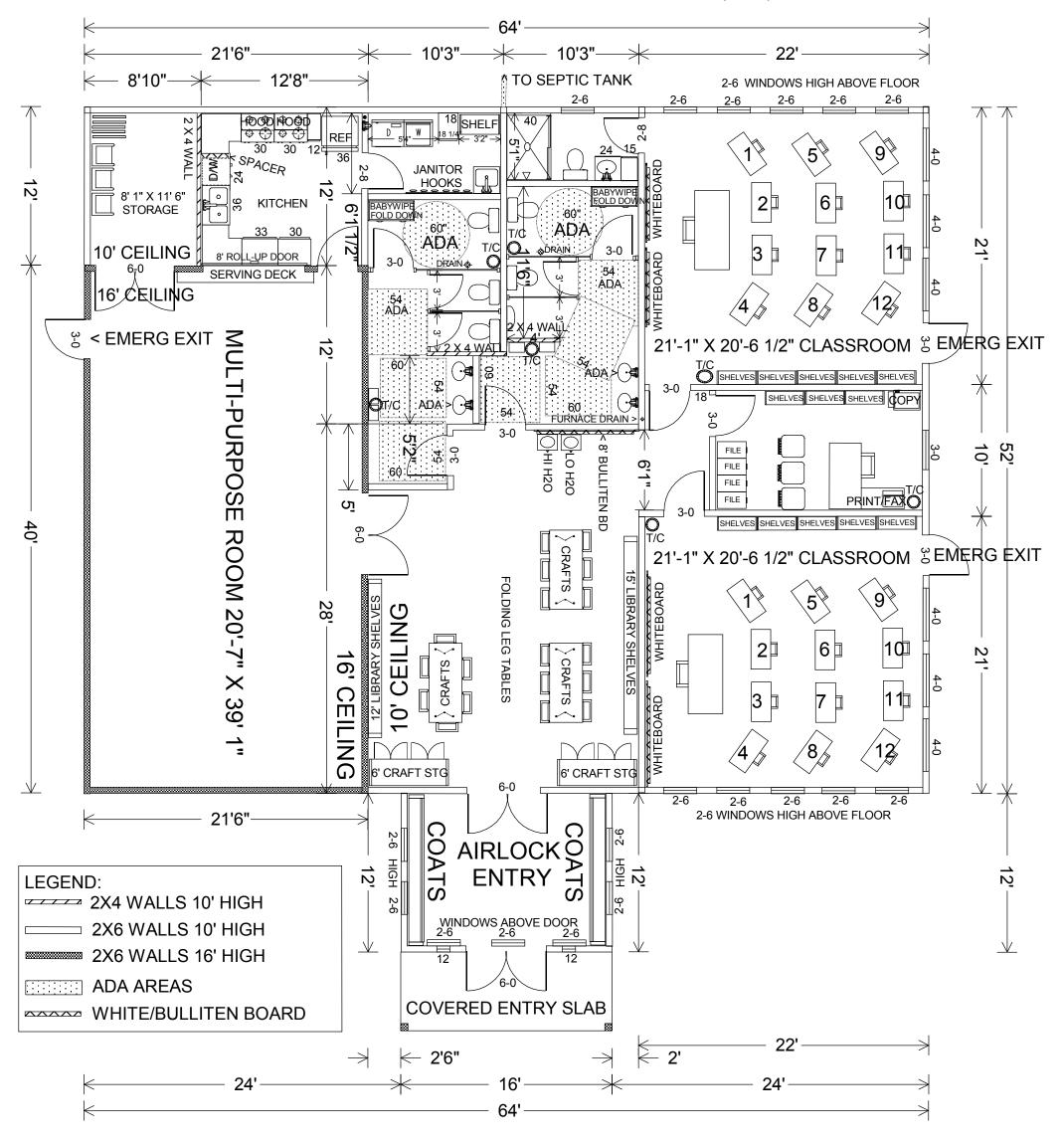
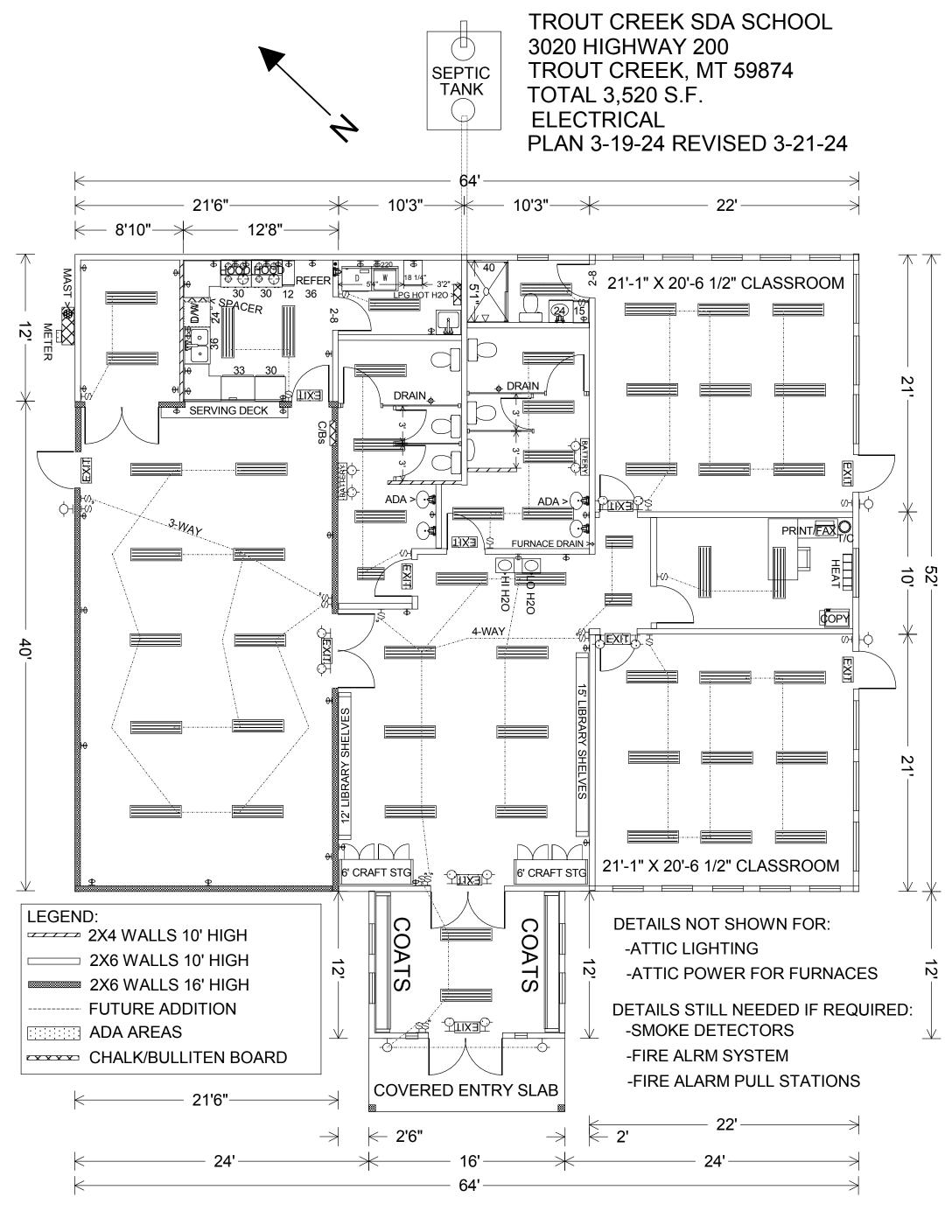


TROUT CREEK SDA SCHOOL 3020 HIGHWAY 200 TROUT CREEK, MT 59874 ELEVATIONS REVISED 4-2-24

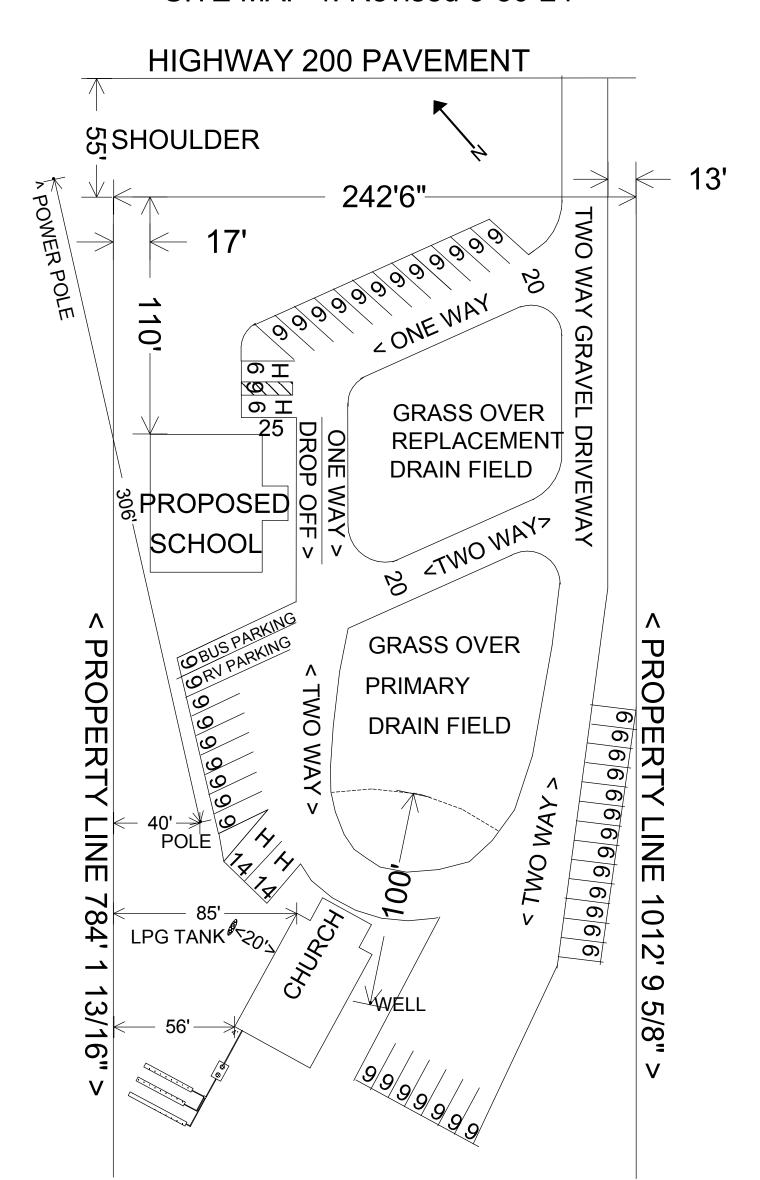


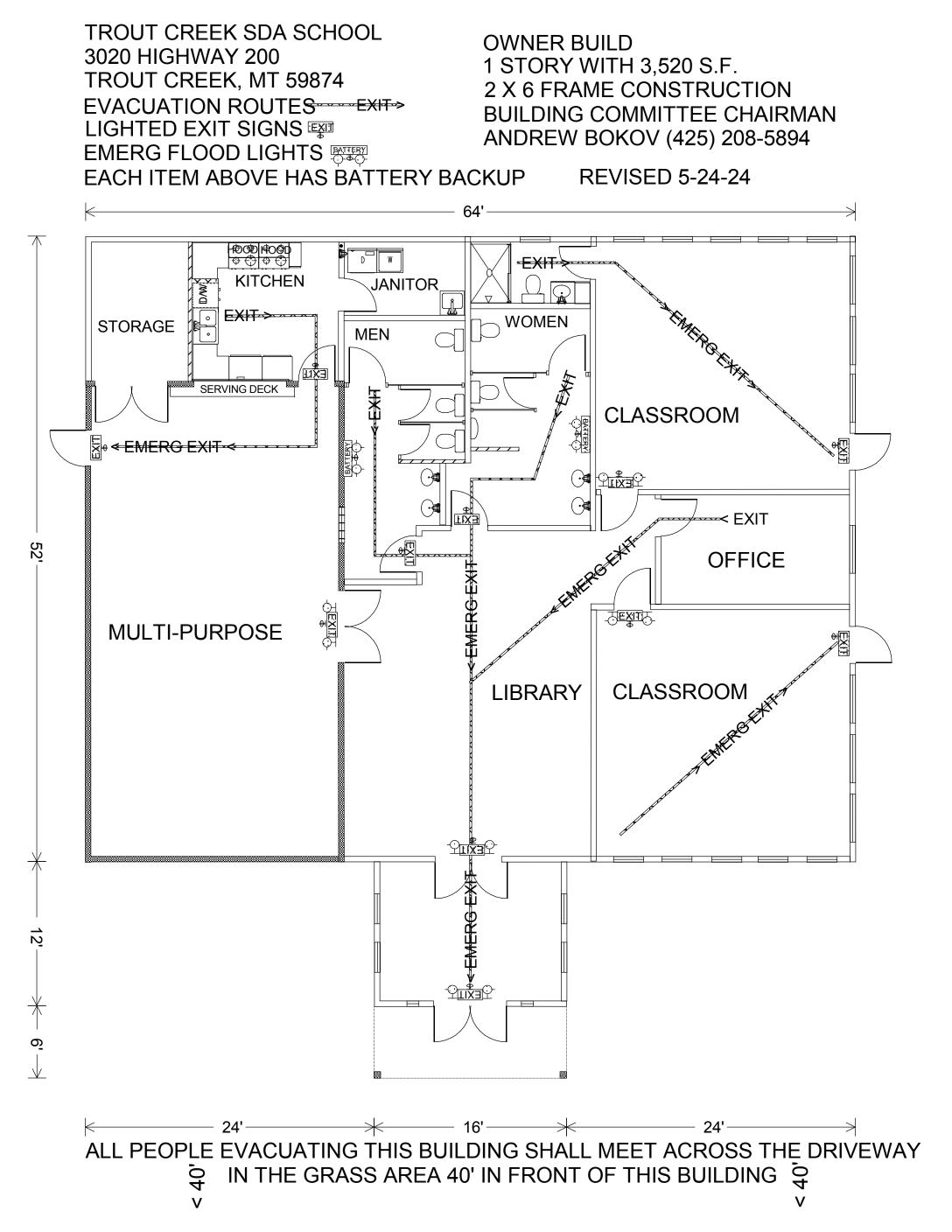

TROUT CREEK SDA SCHOOL 3020 HIGHWAY 200 TROUT CREEK, MT 59874 FOUNDATION PLAN REVISED 3-28-24

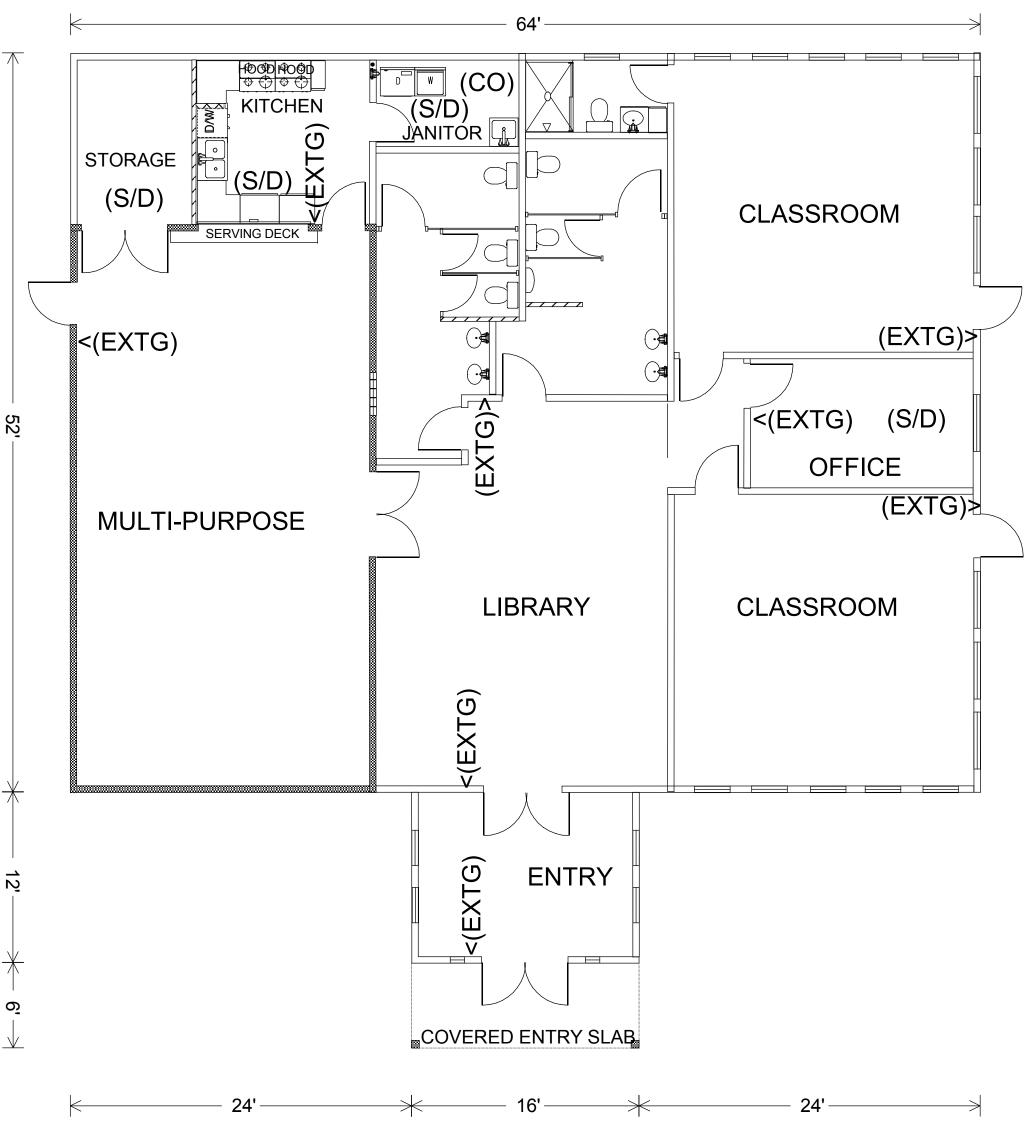

TROUT CREEK SDA SCHOOL 3020 HIGHWAY 200 TROUT CREEK, MT 59874 WALL & FOUNDATION REVISED 4-3-24



TROUT CREEK SDA SCHOOL 3020 HIGHWAY 200 TROUT CREEK, MT 59874 FLOOR PLAN NOT FURNISHED REVISED 3-31-24




TROUT CREEK SDA SCHOOL 3020 HIGHWAY 200 TROUT CREEK, MT 59874 FLOOR PLAN FURNISHED REVISED 4-2-24



Montana Conference SDA 3020 MT Highway 200 Trout Creek, MT 59874 Parcel ID: 353457212025 ACRES= 5.00 SITE MAP 4: Revised 5-30-24

TROUT CREEK SDA SCHOOLC3020 HIGHWAY 2001TROUT CREEK, MT 598742FIRE EXTINGUISHERS (EXTG)ESMOKE DETECTORS (S/D)ACARBON MONOXIDE DETECTORS (CO)REVISED 5-24-24

The truss designs referenced below have been prepared by me or under my direct supervision based on the truss design criteria and requirements ("design criteria") provided by **Trout Creek Truss**.

These truss designs are intended for the fabrication of individual building components that will perform to the design criteria provided. Any variance from the design criteria will render the affected truss designs inapplicable.

Listed below are the truss designs included in this package and covered by this seal.

Job: **DI1955** - 1210769 A1G, A1, B1d, B1G, B1, B2d, B2, B3d, B3G, B3, C1Ga, C1Gb, C1

Any location identification is for file reference only. No determination of the appropriateness of design criteria for any specific project has been made in preparing the truss designs.

Please refer to individual truss designs for specific design criteria.

Arturo A. Hernandez (MT, 17246) My license expiration date for the state of MT is 06/30/2024.

IMPORTANT NOTE: The responsibility of the engineer sealing this package, as a Truss Engineer, is solely for design of individual trusses as individual building components based upon design criteria provided by others and set forth in the referenced truss drawings. The truss design criteria for the components have not been verified as appropriate for any particular building, project or use. Adequacy and suitability of design criteria and requirements for the truss designs for any specific project are the responsibility of the building designer, not the Truss Engineer, per ANSI/TPI-1, Chapter 2.

Empowering great component manufacturers.

EAGLE METAL		🔨 WARNING: Failure to follow m	$\widehat{\Lambda}$ WARNING: Failure to follow may result in property damage or personal injury.
DESIGN NOTES			SYMBOLS
The Truss Design Drawing(s) provided with these Design Notes have been prepared under and are subject to ANSI / TPI 1 published by the Truss Plate Institute, www.tpinst.org. Capitalized terms have the meanings provided in ANSI / TPI 1. Copies of each Truss Design Drawing shall be furnished to the	11.	Bottom chord required bracing shall be at 10ft spacing or less, if no structural rated ceiling is installed, unless noted otherwise. Strongbacking shall be installed on all parallel chord trusses, including flooring systems, to limit deflection and reduce vibration. Refer to BCSI-B7.	PLATE SIZE 3X4 - The first dimension is the width perpendicular to slots. Second dimension is the length parallel to slots.
installation contractor, Building Designer, Owner and all persons fabricating, handling, installing, bracing, or erecting the trusses.	13. 14.	Never exceed the design loading shown. Never stack building or other materials on inadequately braced truss; refer to BCSI. Concentration of construction loads greater than the design loads	-, /, l, Indicates required direction of slots; Reference "Joint Details" for more information.
The Truss Design Drawing is based upon specifications provided by the Building Designer in accordance with ANS1 / TPI 1. Neither the Truss Designer, Eagle, nor an engineer who seals this design (if any) assumes any responsibility for the adequacy or accuracy	15.	shall not be applied to the trusses at any time; refer to BCSI. Trusses shall be handled with care prior to erection to avoid damage. Refer to BCSI for recommended truss handling and erection. MATERIALS & FABRICATION	20 Ga Gr40 connectors required 3X10-20HS - 20 Ga Gr60 connectors required 8X10-18HS - 18 Ga Gr60 connectors required
The Building Designer is solely responsible for the suitability based upon the Truss Design Drawing and shall be responsible for reviewing and verifying that the information shown is in general conformance with the design of the Building. Each Truss Design Drawing is for the individual building component (a truss). A seal on the Truss Design Drawing indicates acceptance of professional engineering responsibility solely for the individual truss. Each Truss Design Drawing assumes trusses will be suitably protected from the environment. HANDLING, BRACING Refer to Building, installing, restraining and bracing trusses. Copies can be obtained from the Structural Building Components Association, www.sbcindustry.com. Bracing shown on each Truss Design Drawing is for lateral support of individual truss components only to reduce buckling lengths. All temporary and permanent bracing, including lateral load and diagonal or cross bracing, are the responsibility, respectively, of the erector and Building Designer. Eagle is not responsible for improper truss fabrication, handling, erection or bracing.	16. 17. 19. 19. 21. 23. 23. 23. 23. 23. 23. 23. 23. 23. 23	Lumber moisture content shall be 19% or less at the time of fabrication unless noted otherwise. Lumber used shall be of the species and size, and in all respects, equal to or better than that specified. Unless expressly noted, the truss designs are not applicable for use with fire retardant or preservative treated lumber. Plates shall be applied on both faces of truss at each joint and embedded fully. Knots and wane at joint locations shall be regulated in accordance with ANSI / TPI 1. For a specified plate gauge and grade, the specified size is a minimum. Connections not shown are the responsibility of others. Adequate support shall be provided to resist gravity, lateral and uplift loads. For 4X2 truss orientation, locate plates 0 - 1/16" from outside the edge of the truss. For 4X2 truss orientation, locate plates 0 - 1/16" from outside the odge of the truss. For the truss orientation and is the responsibility of the responsibility of truss fabricator. Do not cut or alter any truss member or plate with ANSI / TPI 1.	Internal BRACING When this symbol shown, Continuous lateral bracing is required on the member of the truss. BEARING Indicates location where bearings (supports) occur. Indicates location where bearings (supports) occur. PLATE LOCATION & ORIENTATION The plate shall be centered on joint and/or placed in accordance with the design drawing/QC full scale details. REARING Ansol / TPI 1: National Design drawing/QC full Scale details. Reared on accordance with the design drawing/QC full Scale details. Reared on accordance with the design drawing/QC full Scale details. Reared on accordance with the design drawing/QC full Scale details. Reared on accordance with the design drawing/QC full Scale details. Reared dramation - Guide to Good Practice for Metal Plate Connected Wood Trusses M
sheathing, directly attached, or have purlins provided at spacing shown, unless noted otherwise.	28.	design values are by others. Install specified hangers per manufacturer recommendations.	•ESR: 1082 published by the International Code Council. www.icc-es.org

4.

i.

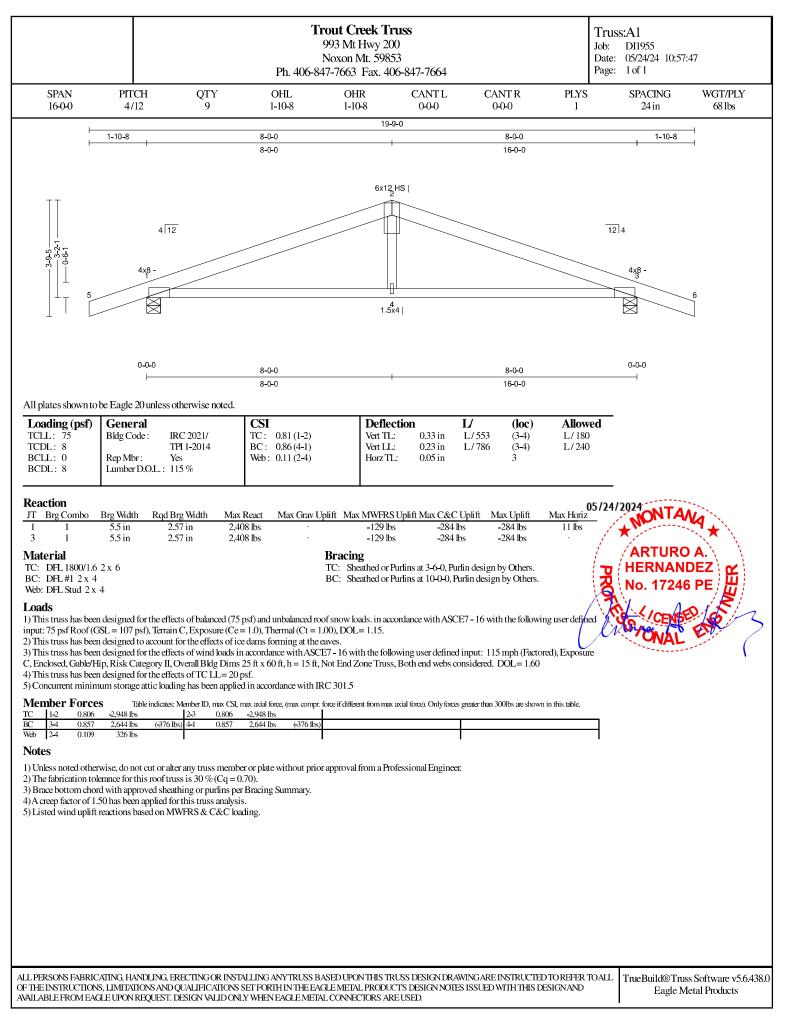
.9

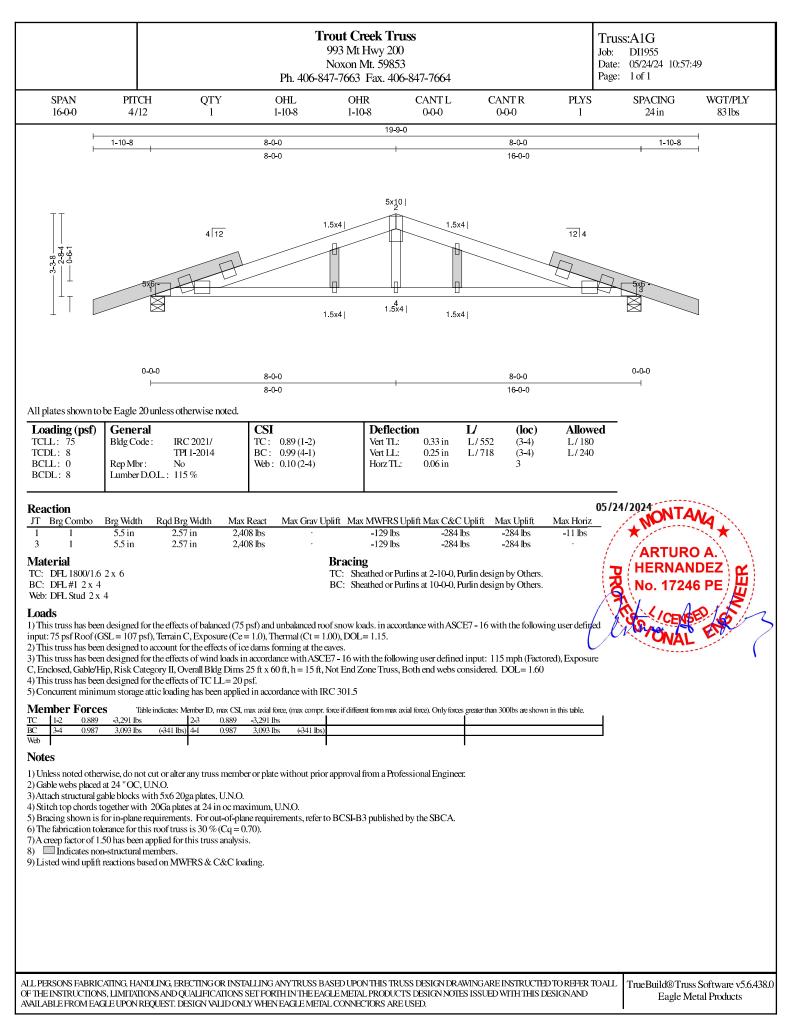
2.

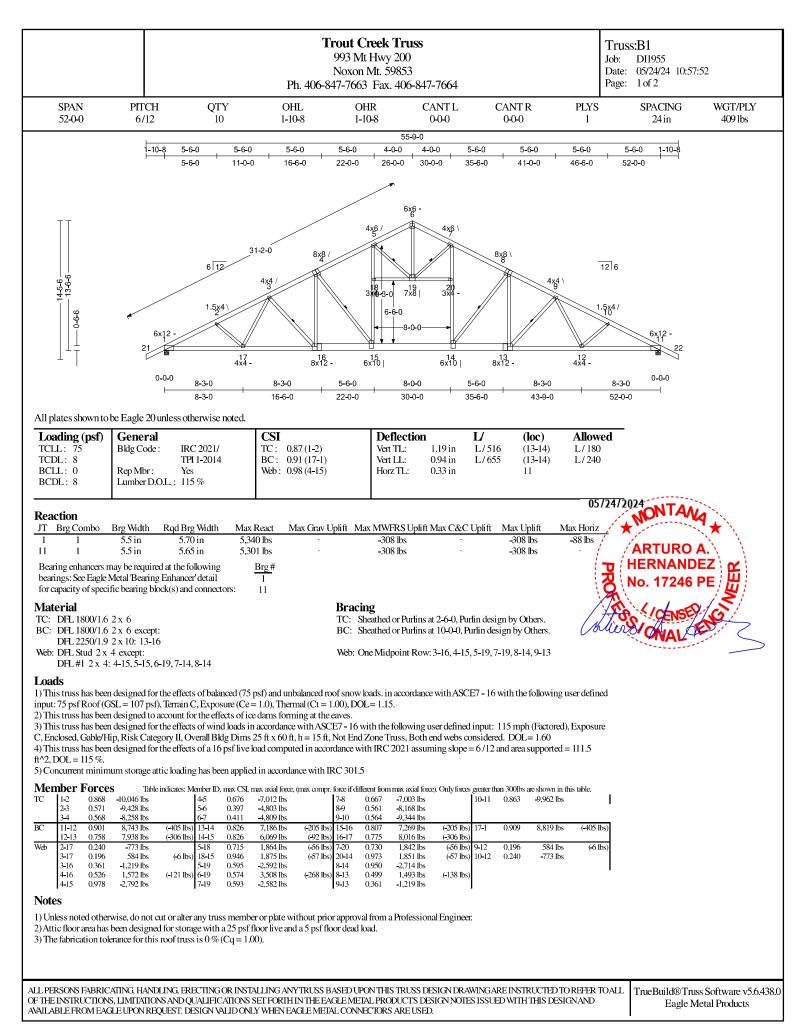
10.

6.

<u></u>

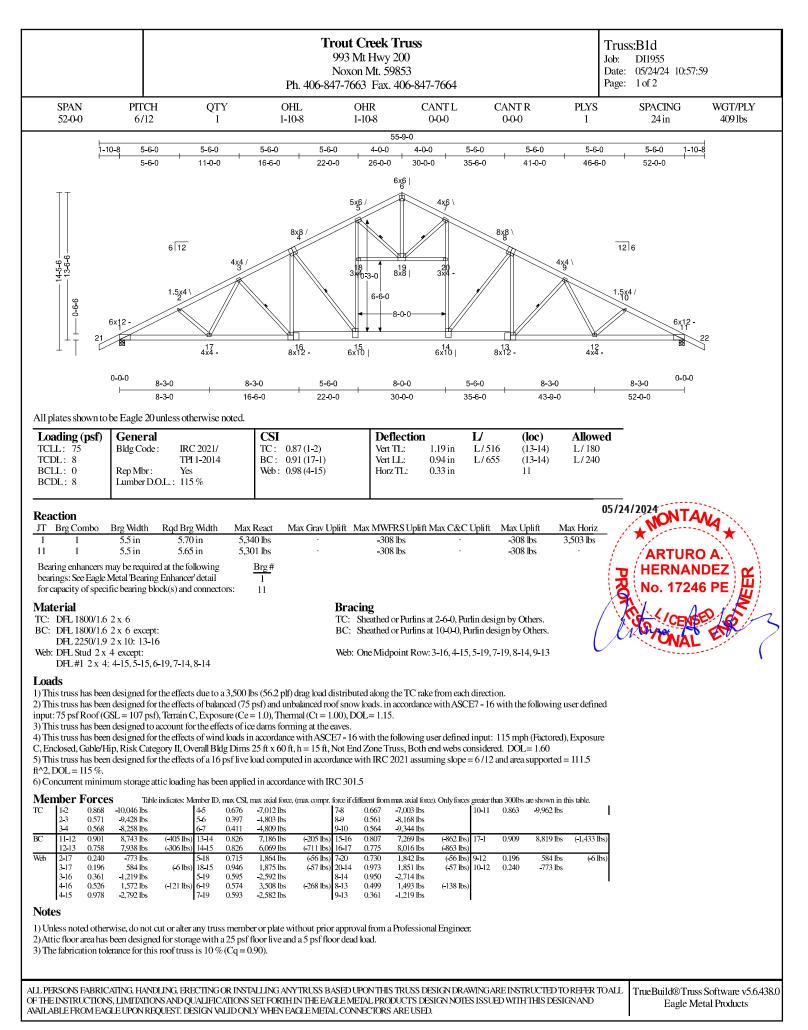

1210769 0002/0324


FAGLE METAL


н.

6

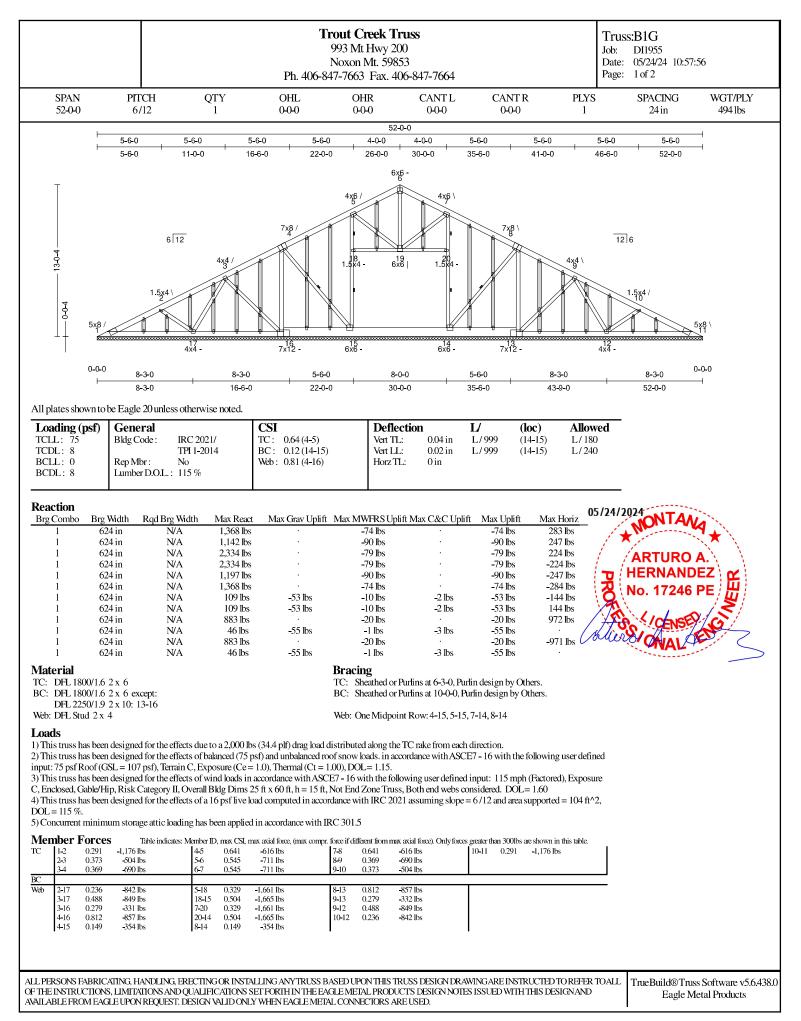
3.



				rout Creek T 993 Mt Hwy 2 Noxon Mt. 598 47-7663 Fax. 4	00 853		J I	Truss:B1 lob: D11955 Date: 05/24/24 10:57 Page: 2 of 2	-52
SPAN	PITCH	QTY	OHL	OHR	CANT L	CANT R	PLYS	SPACING	WGT/PLY
52-0-0	6/12	10	1-10-8	1-10-8	0-0-0	0-0-0	1	24 in	4091bs

4) Brace bottom chord with approved sheathing or purlins per Bracing Summary.

(4) Bace outcome for the with a photoes shearing or paints per Bacing Summary.
(5) At least one web of this truss has been designed with a panel point in the web. All panel points on such webs shall be braced laterally perpendicular to the plane
(6) Lateral braces shall be installed within 6 " of each web panel point.
(7) A creep factor of 1.50 has been applied for this truss analysis.
(8) Indicates lateral bracing required perpendicular to the plane of the truss at either the midpoint (one shown) or third points (two shown), bracing by others. See BCSI-B3 for additional information.
(9) Listed write method are MURES & C. C. Indicates and an MURES & C. C. Indicates at either the midpoint (one shown) or third points (two shown), bracing by others. See BCSI-B3 for additional information. 9) Listed wind uplift reactions based on MWFRS & C&C loading.


ALL PERSONS FABRICATING, HANDLING, ERECTING OR INSTALLING ANY TRUSS BASED UPON THIS TRUSS DESIGN DRAWING ARE INSTRUCTED TO REFER TO ALL OF THE INSTRUCTIONS, LIMITATIONS AND QUALIFICATIONS SET FORTH IN THE EAGLE METAL PRODUCTS DESIGN NOTES ISSUED WITH THIS DESIGNAND AVAILABLE FROM EAGLE UPON REQUEST. DESIGN VALID ONLY WHEN EAGLE METAL CONNECTORS ARE USED.

			Frout Creek T 993 Mt Hwy 2 Noxon Mt. 598 347-7663 Fax. 4	00 353			Truss:B1d Job: D11955 Date: 05/24/24 10:57: Page: 2 of 2	-59
SPAN PIT 52-0-0 6,	CH QTY	OHL	OHR	CANT L	CANT R	PLYS	SPACING	WGT/PLY
	12 1	1-10-8	1-10-8	0-0-0	0-0-0	1	24 in	409 lbs

4) Brace bottom chord with approved sheathing or purlins per Bracing Summary.
5) At least one web of this truss has been designed with a panel point in the web. All panel points on such webs shall be braced laterally perpendicular to the plane of the truss. Lateral braces shall be installed within 6 "of each web panel point.
6) Lateral bracing shown is for illustration purposes only and may be placed on either edge of truss member.
7) A creep factor of 1.50 has been applied for this truss analysis.
8) Indicates lateral bracing required perpendicular to the plane of the truss at either the midpoint (one shown) or third points (two shown), bracing by others. See BCSI-B3 for additional information. 9) Listed wind uplift reactions based on MWFRS & C&C loading.

ALL PERSONS FABRICATING, HANDLING, ERECTING OR INSTALLING ANYTRUSS BASED UPON THIS TRUSS DESIGN DRAWINGARE INSTRUCTED TO REFER TO ALL OF THE INSTRUCTIONS, LIMITATIONS AND QUALIFICATIONS SET FORTH IN THE EAGLE METAL PRODUCTS DESIGN NOTES ISSUED WITH THIS DESIGNAND AVAILABLE FROM EAGLE UPON REQUEST. DESIGN VALID ONLY WHEN EAGLE METAL CONNECTORS ARE USED.

		rout Creek T 993 Mt Hwy 2 Noxon Mt. 598 47-7663 Fax. 4	00 853			Truss:B1G Job: DI1955 Date: 05/24/24 10:57: Page: 2 of 2	56
SPAN PIT 52-0-0 6/	OHL 0-0-0	OHR 0-0-0	CANT L 0-0-0	CANT R 0-0-0	PLYS 1	SPACING 24 in	WGT/PLY 494 lbs

Notes

1) Unless noted otherwise, do not cut or alter any truss member or plate without prior approval from a Professional Engineer.

2) Gable webs placed at 24 "OC, U.N.O.

4) Bracing shown is for in-plane requirements. For out-of-plane requirements, refer to BCSI-B3 published by the SBCA.

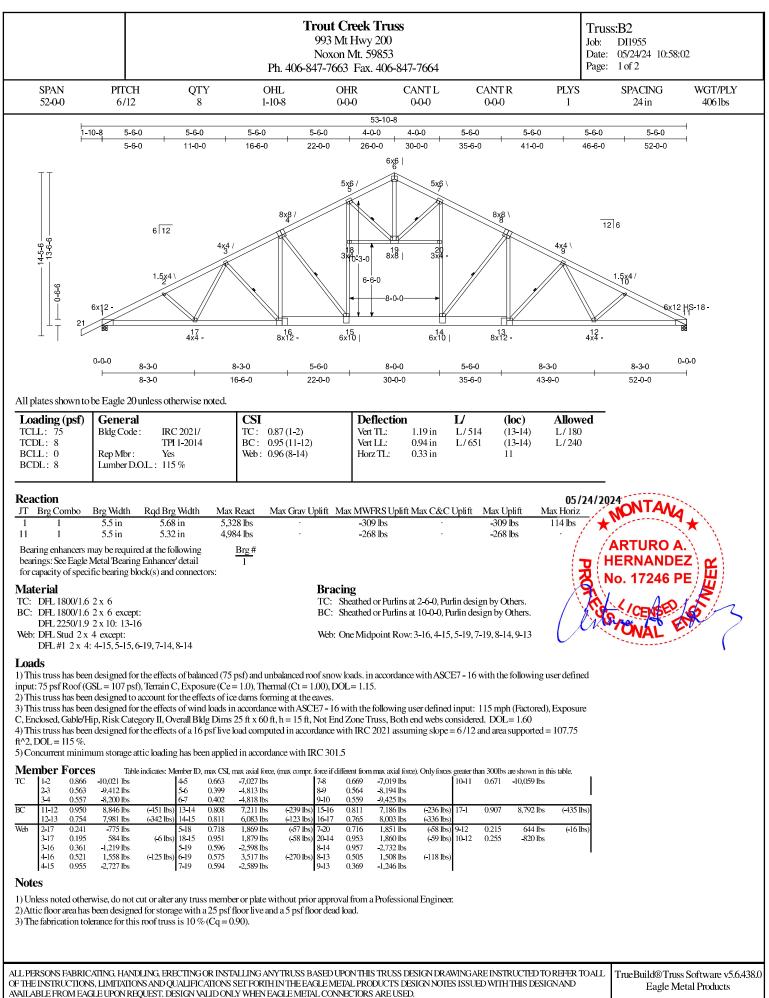
5) Attic floor area has been designed for storage with a 25 psf floor live and a 5 psf floor dead load.

6) The fabrication to calculate both designed of storage with a 25 ps noor nee and a 5 ps noor deal odd. 6) The fabrication tolerance for this roof truss is 10 % (Cq = 0.90). 7) Gable must be sheathed on one side or lateral bracing applied appropriately. 8) At least one web of this truss has been designed with a panel point in the web. All panel points on such webs shall be braced laterally perpendicular to the plane

of the truss. Lateral braces shall be installed within 6 "of each web panel point.

9) Lateral bracing shown is for illustration purposes only and may be placed on either edge of truss member.

10) A creep factor of 1.50 has been applied for this truss analysis.

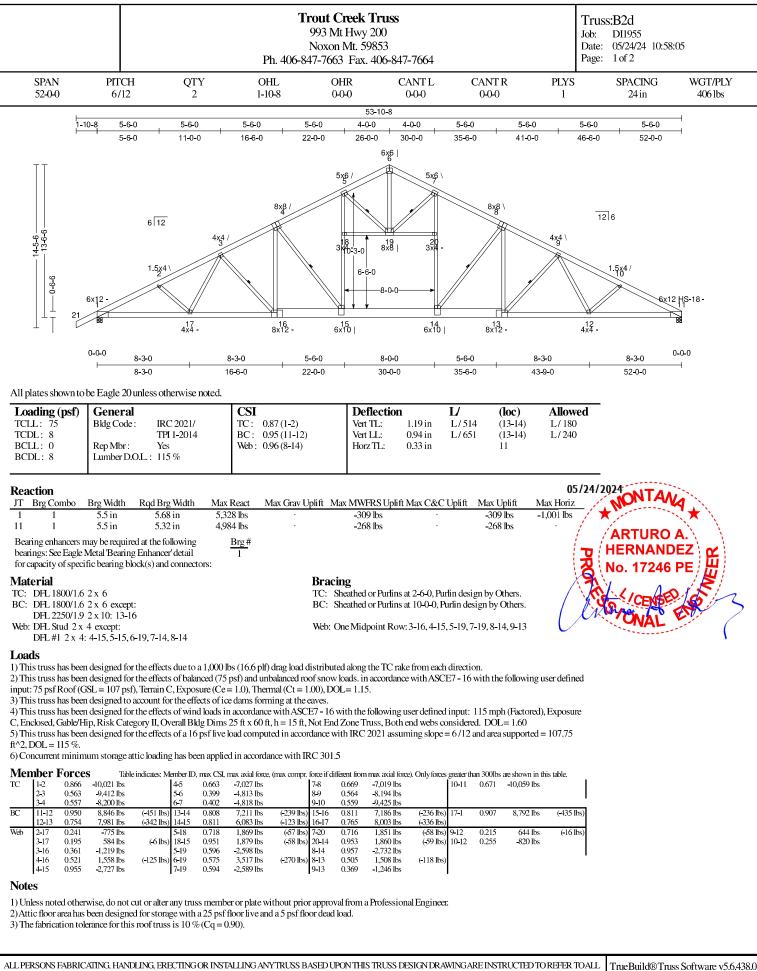

11) Indicates lateral bracing required perpendicular to the plane of the truss at either the midpoint (one shown) or third points (two shown), bracing by others. See BCSI-B3 for additional information.

12) Indicates non-structural members.

13) Due to negative reactions in gravity load cases, special connections to the bearing surface at joints 1, 11, 1, 11 may need to be considered.

14) Listed wind uplift reactions based on MWFRS & C&C loading.

ALL PERSONS FABRICATING, HANDLING, ERECTING OR INSTALLING ANY TRUSS BASED UPON THIS TRUSS DESIGN DRAWING ARE INSTRUCTED TO REFER TO ALL
OF THE INSTRUCTIONS, LIMITATIONS AND QUALIFICATIONS SET FORTH IN THE EAGLE METAL PRODUCTS DESIGN NOTES ISSUED WITH THIS DESIGN AND
AVAILABLE FROM EAGLE UPON REQUEST. DESIGN VALID ONLY WHEN EAGLE METAL CONNECTORS ARE USED.

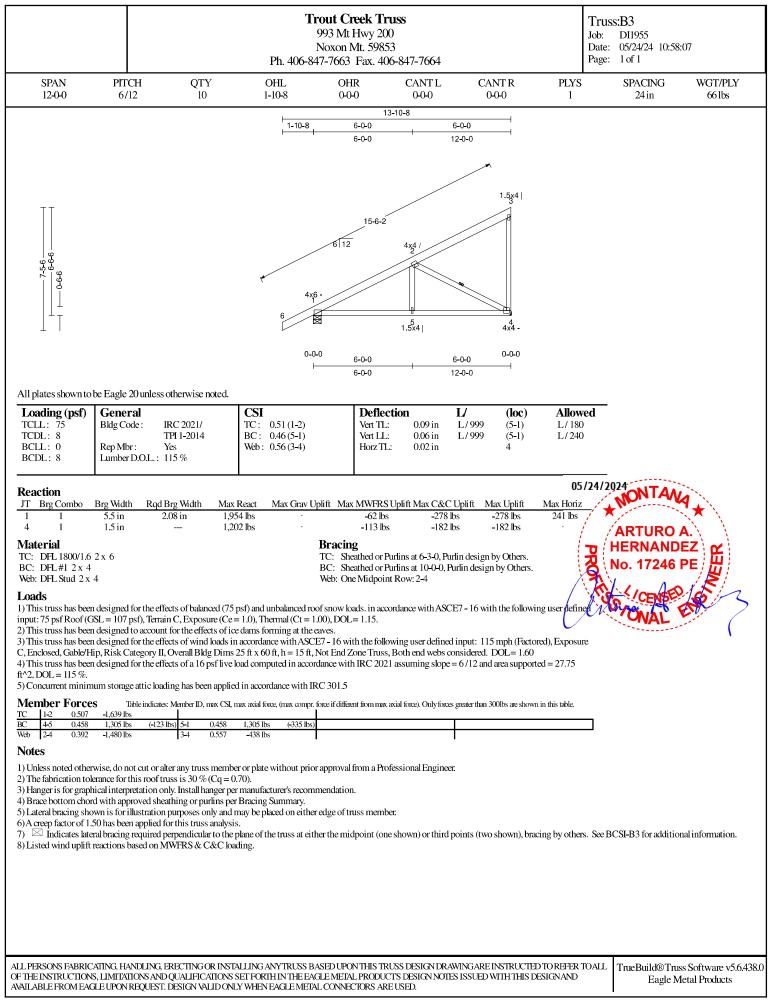

6

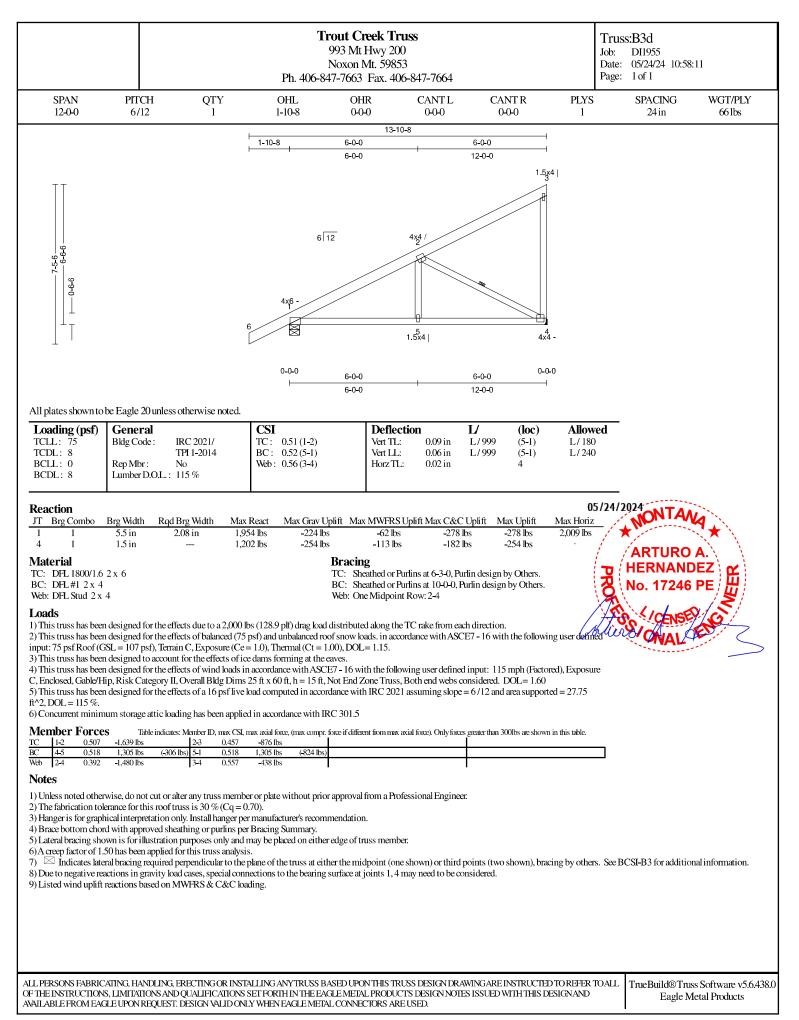
				rout Creek T 993 Mt Hwy 2 Noxon Mt. 598 47-7663 Fax. 4	00 853		J I	Fruss:B2 ob: D11955 Date: 05/24/24 10:58 Page: 2 of 2	:02
SPAN	PITCH	QTY	OHL	OHR	CANT L	CANT R	PLYS	SPACING	WGT/PLY
52-0-0	6/12	8	1-10-8	0-0-0	0-0-0	0-0-0	1	24 in	4061bs

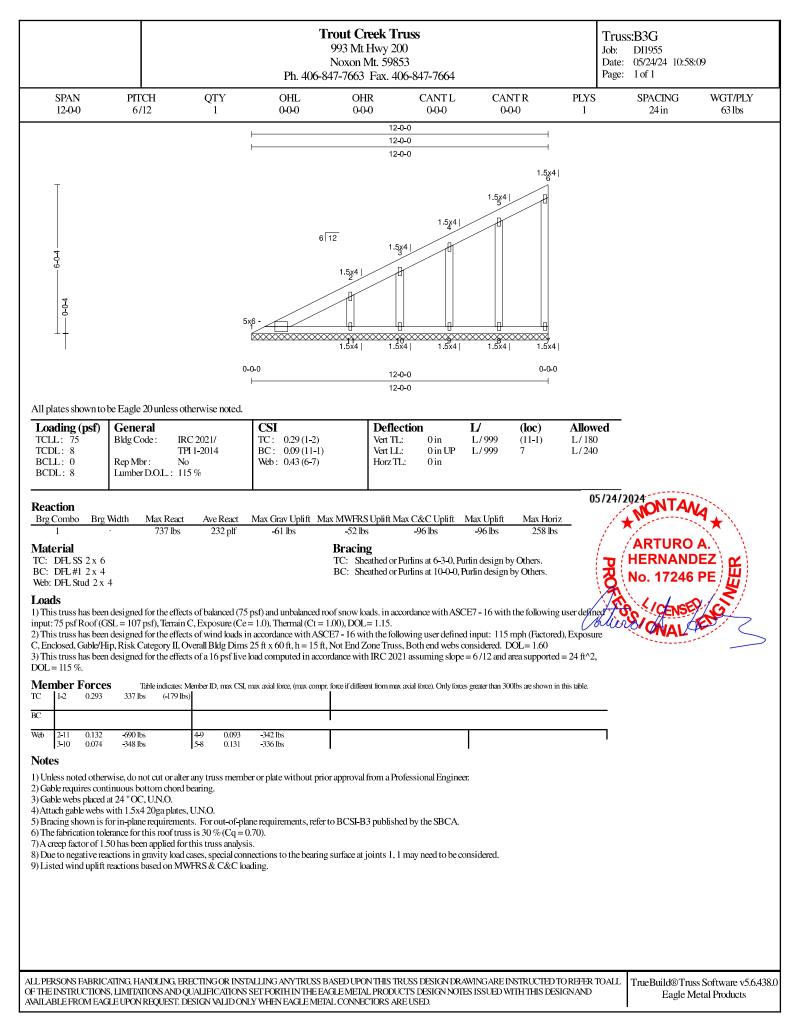
4) Brace bottom chord with approved sheathing or purlins per Bracing Summary.

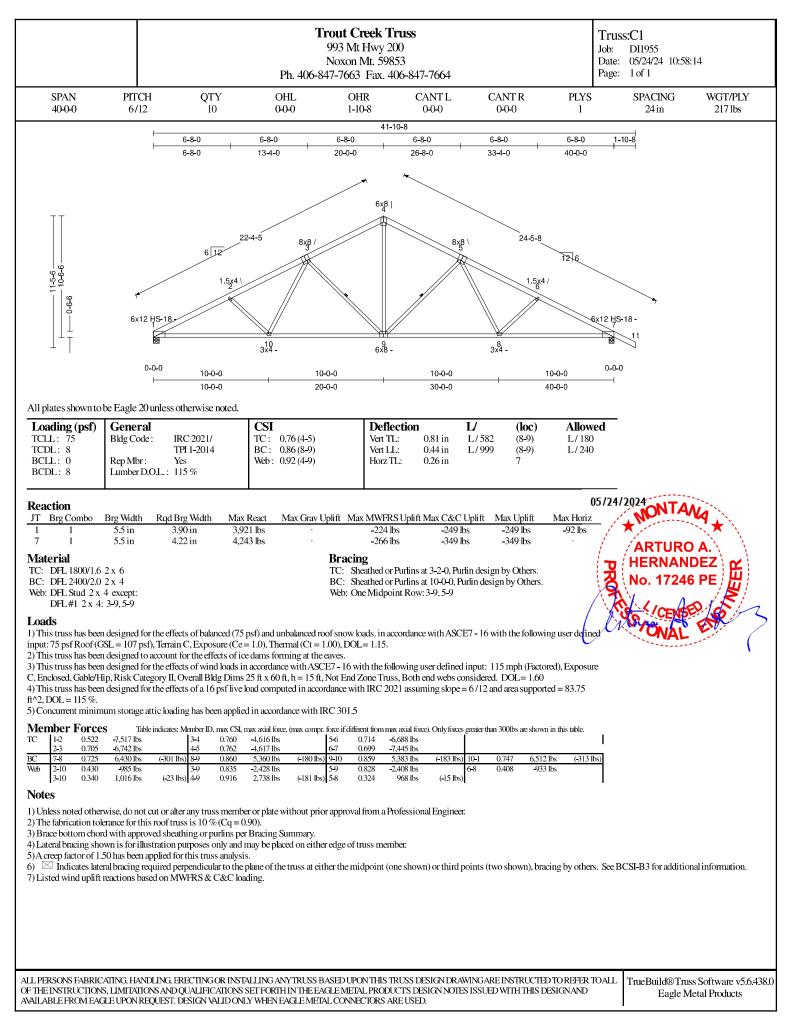
(4) Bace outcome for with approved shearing or paints per Bacing Summary.
(5) At least one web of this truss has been designed with a panel point in the web. All panel points on such webs shall be braced laterally perpendicular to the plane
(6) Lateral braces shall be installed within 6 " of each web panel point.
(7) A creep factor of 1.50 has been applied for this truss analysis.
(8) Indicates lateral bracing required perpendicular to the plane of the truss at either the midpoint (one shown) or third points (two shown), bracing by others. See BCSI-B3 for additional information.
(9) Listed write method are MURES & C. C. Indicates and an MURES & C. C. Indicates and an AUX and a provide the truss at either the midpoint (one shown) or third points (two shown), bracing by others. See BCSI-B3 for additional information. 9) Listed wind uplift reactions based on MWFRS & C&C loading.

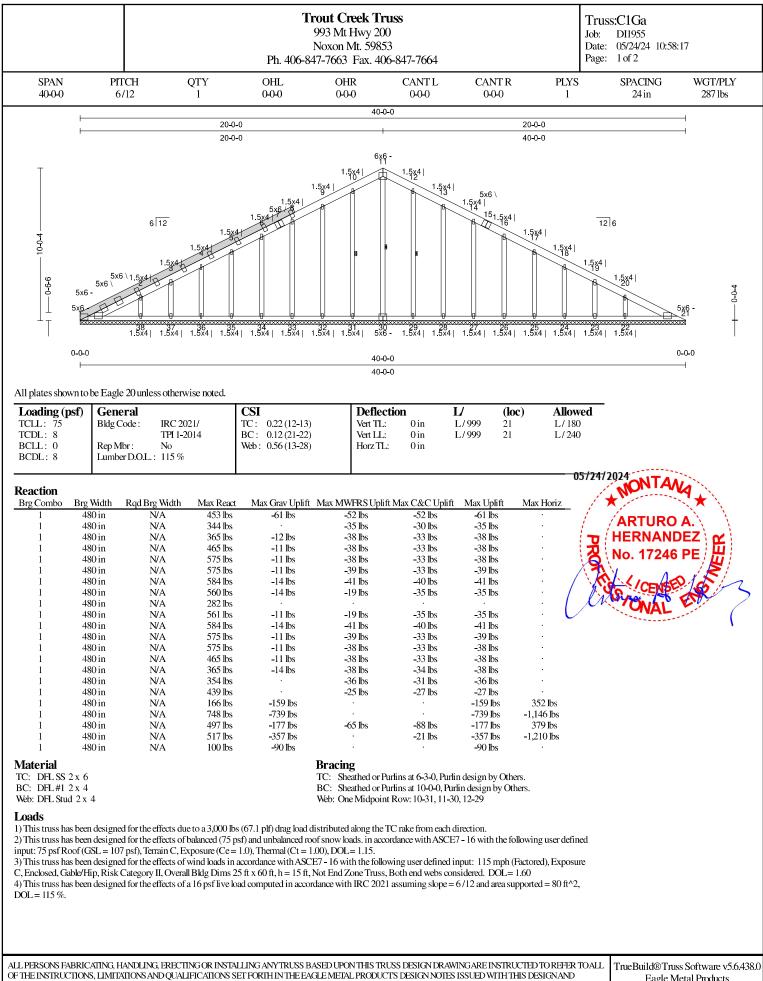
ALL PERSONS FABRICATING, HANDLING, ERECTING OR INSTALLING ANY TRUSS BASED UPON THIS TRUSS DESIGN DRAWING ARE INSTRUCTED TO REFER TO ALL OF THE INSTRUCTIONS, LIMITATIONS AND QUALIFICATIONS SET FORTH IN THE EAGLE METAL PRODUCTS DESIGN NOTES ISSUED WITH THIS DESIGN AND AVAILABLE FROM EAGLE UPON REQUEST. DESIGN VALID ONLY WHEN EAGLE METAL CONNECTORS ARE USED.


OF THE INSTRUCTIONS, LIMITATIONS AND QUALIFICATIONS SET FORTH IN THE EAGLE METAL PRODUCTS DESIGN NOTES ISSUED WITH THIS DESIGN AND AVAILABLE FROM EAGLE UPON REQUEST. DESIGN VALID ONLY WHEN EAGLE METAL CONNECTORS ARE USED.


				rout Creek T 993 Mt Hwy 2 Noxon Mt. 598 47-7663 Fax. 4	00 353		Jo D	Fruss:B2d ob: D11955 Date: 05/24/24 10:58 Page: 2 of 2	:05
SPAN	РІТСН	QTY	OHL	OHR	CANT L	CANT R	PLYS	SPACING	WGT/PLY
52-0-0	6/12	2	1-10-8	0-0-0	0-0-0	0-0-0	1	24 in	4061bs


4) Brace bottom chord with approved sheathing or purlins per Bracing Summary.


(4) Bace outcome for the with a paper version been designed with a panel point in the web. All panel points on such webs shall be braced laterally perpendicular to the plane
(5) At least one web of this truss has been designed within 6 " of each web panel point.
(6) Lateral braces shall be installed within 6 " of each web panel point.
(7) A creep factor of 1.50 has been applied for this truss analysis.
(8) Indicates lateral bracing required perpendicular to the plane of the truss at either the midpoint (one shown) or third points (two shown), bracing by others. See BCSI-B3 for additional information.
(9) Listed write method are MWIRES & C. C. I. bediane. 9) Listed wind uplift reactions based on MWFRS & C&C loading.


ALL PERSONS FABRICATING, HANDLING, ERECTING OR INSTALLING ANY TRUSS BASED UPON THIS TRUSS DESIGN DRAWING ARE INSTRUCTED TO REFER TO ALL OF THE INSTRUCTIONS, LIMITATIONS AND QUALIFICATIONS SET FORTH IN THE EAGLE METAL PRODUCTS DESIGN NOTES ISSUED WITH THIS DESIGN AND AVAILABLE FROM EAGLE UPON REQUEST. DESIGN VALID ONLY WHEN EAGLE METAL CONNECTORS ARE USED.

AVAILABLE FROM EAGLE UPON REQUEST. DESIGN VALID ONLY WHEN EAGLE METAL CONNECTORS ARE USED.

Eagle Metal Products

1210769 0019/0024

						Ph. 4	Noxo	lt Hwy n Mt. 5	/ 200				Job: Date:	s:C1Ga DI1955 05/24/24 10:58 2 of 2	:17
	SPAN 40-0-		PITCH 6/12	QT 1	Ϋ́	OHL 0-0-0)HR)-0-0	CANT L 0-0-0	(CANT F 0-0-0	R PLYS 1		SPACING 24 in	WGT/PLY 287 lbs
TC	nber 1-2 2-3 3-4 4-5 5-6	Forces 0.219 0.137 0.132 0.137 0.217	5 Table indic -1,487 lbs -1,329 lbs -1,167 lbs -999 lbs -831 lbs	ates: Member ID, 6-8 8-9 9-10 12-13 13-14	, max CSI, 0.214 0.212 0.222 0.222 0.213	max axial force, (max -663 lbs -496 lbs -327 lbs -346 lbs -515 lbs	compr. force if di 14-16 16-17 17-18 18-19 19-20	fferent from 0.214 0.217 0.137 0.132 0.143	n max axial force). Only force -683 lbs -850 lbs -1,018 lbs -1,186 lbs -1,350 lbs	s greater tha 20-21	an 300lbs a 0.190	are shown in this table. -1,598 lbs			
BC Web	2-38 3-37 4-36 5-35 6-34	0.077 0.069 0.091 0.169 0.302	-399 lbs -324 lbs -332 lbs -433 lbs -543 lbs	8-33 9-32 10-31 12-29 13-28	0.415 0.558 0.198 0.198 0.558	-543 lbs -552 lbs -529 lbs -528 lbs -552 lbs	14-27 16-26 17-25 18-24 19-23	0.415 0.302 0.169 0.091 0.067	-543 lbs -543 lbs -433 lbs -333 lbs -316 lbs	20-22	0.079	-410 lbs			

Notes

1) Unless noted otherwise, do not cut or alter any truss member or plate without prior approval from a Professional Engineer.

2) Upper top chord notching is permitted beyond horizontal dimension of 36.00" from the left heel.

3) Gable requires continuous bottom chord bearing.

4) Gable webs placed at 24 "OC, U.N.O.

5) Attach gable webs with 1.5x4 20ga plates, U.N.O.

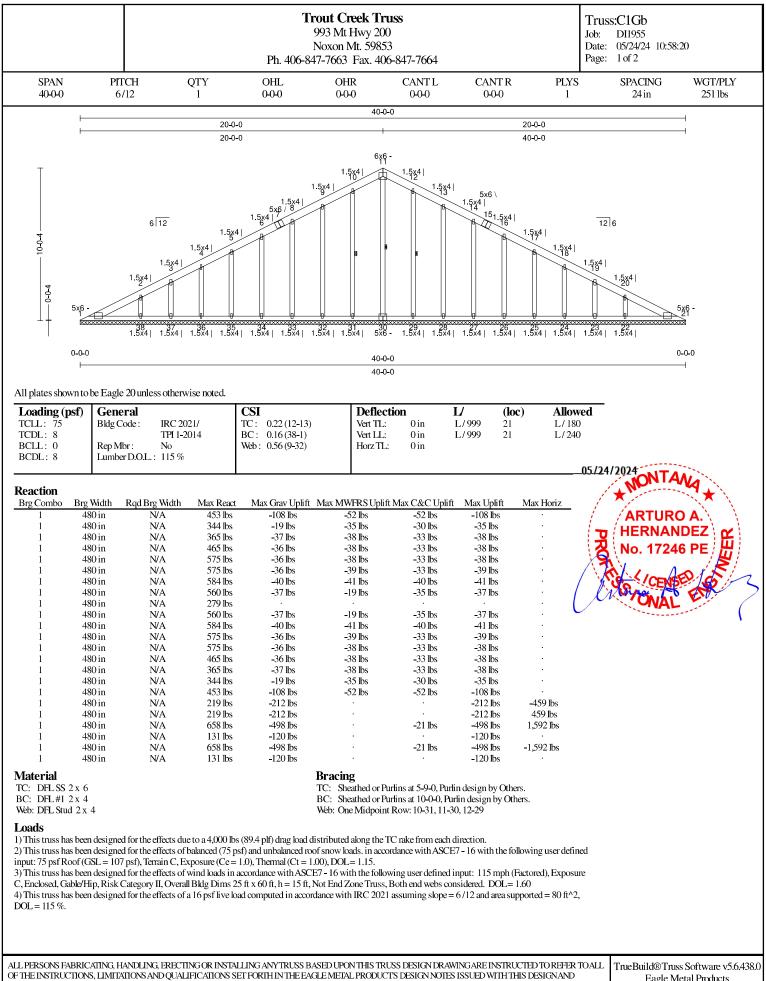
6) Bracing shown is for in-plane requirements. For out-of-plane requirements, refer to BCSI-B3 published by the SBCA.

7) The fabrication tolerance for this roof truss is 30 % (Cq = 0.70).

8) Gable must be sheathed on one side or lateral bracing applied appropriately.

9) Lateral bracing shown is for illustration purposes only and may be placed on either edge of truss member.

10) A creep factor of 1.50 has been applied for this truss analysis.


11) Indicates lateral bracing required perpendicular to the plane of the truss at either the midpoint (one shown) or third points (two shown), bracing by others. See BCSI-B3 for additional information.

12) Due to negative reactions in gravity load cases, special connections to the bearing surface at joints 22, 24, 25, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 21, 1, 1, 21,

21 may need to be considered.

13) Listed wind uplift reactions based on MWFRS & C&C loading.

ALL PERSONS FABRICATING, HANDLING, ERECTING OR INSTALLING ANY TRUSS BASED UPON THIS TRUSS DESIGN DRAWING ARE INSTRUCTED TO REFER TO ALL OF THE INSTRUCTIONS, LIMITATIONS AND QUALIFICATIONS SET FORTH IN THE EAGLE METAL PRODUCTS DESIGN NOTES ISSUED WITH THIS DESIGN AND AVAILABLE FROM EAGLE UPON REQUEST. DESIGN VALID ONLY WHEN EAGLE METAL CONNECTORS ARE USED.

AVAILABLE FROM EAGLE UPON REQUEST, DESIGN VALID ONLY WHEN EAGLE METAL CONNECTORS ARE USED.

Eagle Metal Products

						Ph. 4	Noxo	At Hwy n Mt. 5	200				Job: Date:	ss:C1Gb DI1955 05/24/24 10:58 2 of 2	:21
	SPAN 40-0-		PITCH 6/12	QT 1	Y	OHL 0-0-0)-0-0	CANT L 0-0-0		CANT R 0-0-0	PLYS		SPACING 24 in	WGT/PLY 251 lbs
	nber 1-2 2-3 3-4 4-5 5-6	Forces 0.190 0.143 0.132 0.137 0.217	 Table indi -2,111 lbs -1,781 lbs -1,563 lbs -1,339 lbs -1,115 lbs 	icates: Member ID, 6-8 8-9 9-10 12-13 13-14	max CSI, : 0.214 0.213 0.222 0.222 0.213	max axial force, (max -892 lbs -668 lbs -443 lbs -443 lbs -668 lbs	c compr. force if d 14-16 16-17 17-18 18-19 19-20	ifferent from 0.214 0.217 0.137 0.132 0.143	n max axial force). Only forc -892 lbs -1,115 lbs -1,339 lbs -1,363 lbs -1,761 lbs	es greater ti 20-21	han 300lbs a 0.190	e shown in this table. -2,111 lbs			
BC Web	2-38	0.079	-410 lbs	8-33	0.415	-543 lbs	14-27	0.415	-543 lbs	20-22	0.079	-410 lbs	-		
	3-37 4-36 5-35 6-34	0.067 0.091 0.169 0.302	-316 lbs -333 lbs -433 lbs -543 lbs	9-32 10-31 12-29 13-28	0.558 0.198 0.198 0.558	-552 lbs -528 lbs -528 lbs -552 lbs	16-26 17-25 18-24 19-23	0.302 0.169 0.091 0.067	-543 lbs -433 lbs -333 lbs -316 lbs						

Notes

1) Unless noted otherwise, do not cut or alter any truss member or plate without prior approval from a Professional Engineer.

2) Gable requires continuous bottom chord bearing.

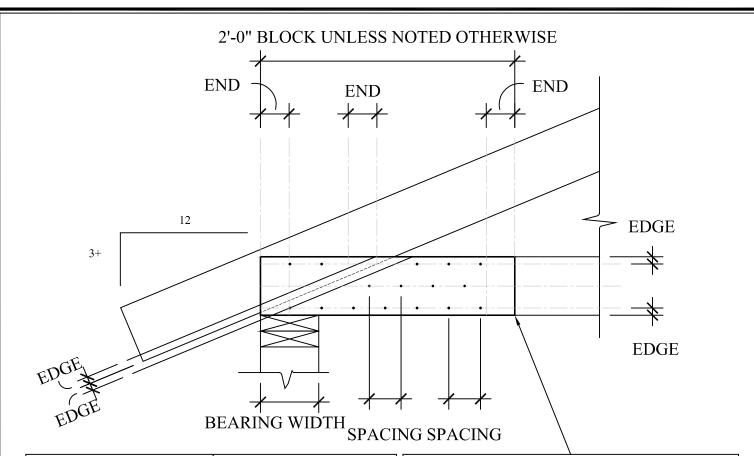
3) Gable webs placed at 24 "OC, U.N.O.

4) Attach gable webs with 1.5x4 20ga plates, U.N.O.

 $\begin{array}{l} \text{(1)} \text{(1)} \text{(2)} \text{$

8) Lateral bracing shown is for illustration purposes only and may be placed on either edge of truss member.

9) A creep factor of 1.50 has been applied for this truss analysis.


10) Indicates lateral bracing required perpendicular to the plane of the truss at either the midpoint (one shown) or third points (two shown), bracing by others. See BCSI-B3 for additional information.

Indicates and a braining required perpendicular to the practice the trues are true trues are true trues and the prints (two shown) of true points (true points (tr

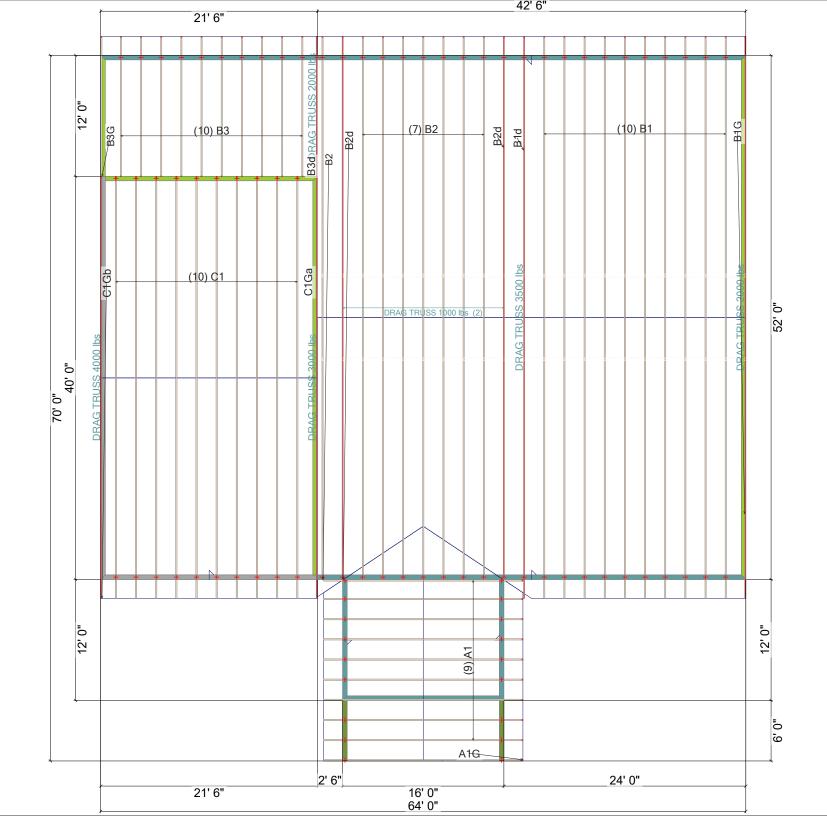
ALL PERSONS FABRICATING, HANDLING, ERECTING OR INSTALLING ANY TRUSS BASED UPON THIS TRUSS DESIGN DRAWING ARE INSTRUCTED TO REFER TO ALL
OF THE INSTRUCTIONS, LIMITATIONS AND QUALIFICATIONS SET FORTH IN THE EAGLE METAL PRODUCTS DESIGN NOTES ISSUED WITH THIS DESIGN AND
AVAILABLE FROM EAGLE UPON REQUEST. DESIGN VALID ONLY WHEN EAGLE METAL CONNECTORS ARE USED.

			Bear	ina B l ock	(s) Capacity [I	bsl				
	_					1	Na	ail Spaci	na	
Species	Rows	Nail	Blocks	Bearing	MIN Spacing	Min	3"	4"	5"	6"
				80	BOX					
Douglans Fir-Larch	2	0.113	1	3.5*	1.375	1,662	795	650	506	361
Douglans Fir-Larch		0.113	1	3.5	1.375	2,818	1,301	1,084	867	723
Douglans Fir-Larch		0.113	2	3.5*	2.750	1,662	1,590	1,084	795	650
Douglans Fir-Larch		0.113	2	3.5*	2.750	2,818	2,529	2,023	1,662	1,373
Douglans Fir-Larch	3	0.113	1	5.5*	1.375	2,818	1,301	1,084	867	723
	0				METER GUN					107
Douglans Fir-Larch		0.120	1	3.5*	1.500	1,793	896	733	570	407
Douglans Fir-Larch		0.120	1	3.5	1.500	2,934	1,467	1,222	978	815
Douglans Fir-Larch		0.120	2	3.5*	3.000	1,793	1,793	1,222	896	733
Douglans Fir-Larch		0.120	2	3.5*	3.000	2,934	2,852	2,282	1,874	1,548
Douglans Fir-Larch	3	0.120	1	5.5*	1.500 R 12d BOX	2,934	1,467	1,222	978	815
Douglans Fir-Larch	2	0.128	1	3.5*	1.625	1,762	834	556	556	464
Douglans Fir-Larch		0.128	1	3.5	1.625	2,967	1,576	1,205	1,113	404 834
Douglans Fir-Larch		0.128	2	3.5*	3.250	1,576	0	1,113	927	834
Douglans Fir-Larch		0.128	2	3.5*	3.250	2,967	0	2,411	2,040	1,669
Douglans Fir-Larch		0.128	1	5.5*	1.625	2,967	1,576	1,205	1,113	834
	5				0.131 DIAMET			1,200	1,113	004
Douglans Fir-Larch	2	0.131	1	3.5*	1.625	1,845	874	583	583	486
Douglans Fir-Larch		0.131	1	3.5	1.625	3,108	1,651	1,262	1,165	874
Douglans Fir-Larch		0.131	2	3.5*	3.250	1,651	0	1,165	971	874
Douglans Fir-Larch		0.131	2	3.5*	3.250	3,108	0	2,525	2,137	1,748
Douglans Fir-Larch		0.131	1	5.5*	1.625	3,108	1,651	1,262	1,165	874
					d BOX			,		
Douglans Fir-Larch	2	0.135	1	3.5*	1.625	1,960	928	619	619	516
Douglans Fir-Larch		0.135	1	3.5	1.625	3,281	1,753	1,238	1,134	928
Douglans Fir-Larch	2	0.135	2	3.5*	3.250	1,753	0	1,238	1,031	928
Douglans Fir-Larch	3	0.135	2	3.5*	3.250	3,300	0	2,475	2,063	1,856
Douglans Fir-Larch	ı 3	0.135	1	5.5*	1.625	3,300	1,753	1,238	1,134	928
			120		ON OR 20d BC					
Douglans Fir-Larch		0.148	1	3.5*	1.875	1,764	941	706	588	470
Douglans Fir-Larch		0.148	1	3.5	1.875	2,940	1,882	1,411	1,176	1,058
Douglans Fir-Larch		0.148	2	3.5*	3.750	1,411	0	1,411	1,058	823
Douglans Fir-Larch		0.148	2	3.5*	3.750	2,822	0	2,705	1,999	1,529
Douglans Fir-Larch	3	0.148	1	5.5*	1.875	2,822	1,646	1,411	1,176	941
Develope Eigland	0	0.400	4			4 070	4 407	045	704	504
Douglans Fir-Larch		0.162	1	3.5*	2.000	1,973	1,127	845	704	564
Douglans Fir-Larch Douglans Fir-Larch		0.162 0.162	1 2	3.5 3.5*	2.000 4.000	3,241 1,691	1,973 0	1,691	1,409 1,268	1,127 986
Douglans Fir-Larch		0.162	2	3.5*	4.000	3,100	0	1,691 3,100	2,254	1,832
Douglans Fir-Larch		0.162	2	5.5*	2.000	3,100	1,973	1,691	1,409	1,127
* = Wider Bearing						0,241	1,975	1,031	1,103	1,121
For Total Capacity, 1=A "2" implicates	Add (1	russ P	ies)*(Bea	aring Wid	lth)*625 to Bea	ring Blo	ck(s) Ca	pacity		
				pical Tru	ss Capacity [I b	s]				
		Plies x Truss \		Bearing Width	Fc Perp		uss acity			
		(1.5) (x) (3.5)	(x) (625) (*		281)			
		-	.5	3.5	625		281			
		1	.5	5.5	625	5,1	156			
			3	3.5	625		563			
			3	5.5	625		313			
			.5	3.5	625		344			
			.5	5.5	625		469			
			6	3.5	625		125			
	Tota	al React		-	625 city + Bearing	Block(s	, .	ity		
		Т	russ Rea	iction <=	Bearing Block	Allowat	ble			
									REV	
METAL			BE	ARIN	G ENHANO	CERS			ENG	
					(DFL)					: RC
	1								DAT	E: 03/16

REV: 2.1	DRAWING
ENG: MDV	NUMBER
CAD: RC	DR-61
DATE: 03/16/18	

NAIL TYPE	NAIL PROPERTIES		
	EDGE	MIN SPACING	END
8d BOX (0.113Ø"x2.5")	3/4	1 3/8	1 3/4
10d BOX (0.128Ø"x3.0")	7/8	1 5/8	2
12d BOX (0.128Ø"x3.25")	7/8	1 5/8	2
16d BOX (0.135Ø"x3.5")	7/8	1 5/8	2 1/8
20d BOX (0.148Ø"x4")	1	1 7/8	2 1/4
8d COMMON (0.131Ø"x2.5")	7/8	1 5/8	2
10d COMMON (0.148Ø"x3.0")	1	1 7/8	2 1/4
12d COMMON (0.148Ø"x3.25")	1	1 7/8	2 1/4
16d COMMON (0.162Ø"x3.5")	1	2	2 1/2
0.120"x2.5" GUN	3/4	1 1/2	1 7/8
0.131"x2.5" GUN	7/8	1 5/8	2
0.120"x3.0" GUN	3/4	1 1/2	1 7/8
0.131"x3.0" GUN	7/8	1 5/8	2

ATTACH BLOCK TO TRUSS WITH CONSTRUCTION GRADE WATER PROOF GLUE (SUCH AS "PL400") & (2) STAGGERED ROWS OF NAILS FOR 2x4 OR 2x6, OR (3) STAGGERED ROWS FOR 2x8, 2x10, 2x12. SEE ATTACHED TABLES FOR SPECIFIC NAIL TYPES, CAPACITIES, & REQUIRED NAIL SPACING.


GENERAL NOTES

- 1. SEE ATTACHED TABLES FOR CAPACITIES FOR 2 AND 3 ROWS OF NAILS. IF MORE THAN 3 ARE REQUIRED, CONSULT OUR ENGINEERING OFFICE FOR ASSISTANCE.
- 2. MINIMUM EDGE DISTANCE AND SPACING BETWEEN STAGGERED ROWS IS 6d; NAILS MAY NOT BE WITHIN EDGE LINE.
- 3. MINIMUM SPACING OF NAILS IN A ROW IS 12d.
- 4. MINIMUM END DISTANCE IS 15d; IN ADDITION TO NOTE #2, NAILS MAY NOT BE WITHIN END DISTANCES FROM END OF THE BOARD.
- 5. BLOCK & BOTTOM CHORD SHALL BE THE SAME SIZE, GRADE, AND SPECIES.
- 6. WHEN TWO BLOCKS ARE USED, BLOCKS SHALL BE INSTALLED ON OPPOSITES SIDES OF TRUSS.

BEARING ENHANCERS (TYPICAL EXTERIOR BEARING)

REV: 2.1	DRAWING
ENG: MDV	NUMBER
CAD: RC	DR-30
DATE: 08/03/12	

02/20/

Trout Creek SDA School 3020 MT-200 Trout Creek, MT

TROUT CREEK SDA SCHOOL CONSTRUCTION DOCUMENTS - PERMIT SET 04-30-2024

"	INCH	DBA
#	NUMBER, POUND	DBL
&	AND	DEFL
'	FEET	DEMO
@	AT	DEPT
(E)	EXISTING	DETL
(N)	NEW	DF
AB	ANCHOR BOLT	DIA
ACI	AMERICAN CONCRETE INSTITUTE	DIAG
ADD	ADDENDUM, ADDITION	DIAPH
ADJ	ADJUST, ADJUSTABLE	DIM
AESS	ARCHITECTURALLY EXPOSED STRUCTURAL STEEL	DKG
AFF	ABOVE FINISH FLOOR	DL
ALT	ALTERNATE	DWG
ALUM	ALUMINUM	DWGS
APPROX	APPROXIMATELY	DWL
ARCH	ARCHITECTURE	EIFS
ASTM	AMERICAN SOCIETY FOR TESTING AND MATERIALS	ELEV
AVG	AVERAGE	ENGR
AWS	AMERICAN WELDING SOCIETY	EOR
BALC	BALCONY	EQ
BD	BOARD	EQPT
BEV	BEVEL	ES
BKR	BACKER	EW
BLDG	BUILDING	EXIST
BLK	BLOCK	EXP
BLKG	BLOCKING	EXPO
BM	BEAM	EXT
BOC	BOTTOM OF CURB	F TO F
BOT/BTM	BOTTOM	FAB
BOW	BOTTOM OF WALL	FDTN
BP	BASE PLATE	FE
BRDG	BRIDGE, BRIDGING	FF
BRG	BEARING	FFE
BRK	BRICK	FIN
BSMT	BASEMENT	FLR
BU	BUILT-UP	FOC
CEM CGS CIP CJ CL CLG CLR CMU COL COMP CONC	CEMENT, CEMENTITIOUS CENTER OF GRAVITY OF STRAND CAST IN PLACE CONTROL JOINT CENTER LINE CEILING CLEAR CONCRETE MASONRY UNIT COLUMN COMPOSITE, COMPENSATION CONCRETE	FOC FOF FOM FOS FR FRM FRR FRR FRT FTG FURRO FUT
COND CONN CONSTR CONT CORR CTR CTRL CTSK CU CUST	CONDITION CONNECTION CONSTRUCTION CONTINUOUS CORRIDOR CENTER CONTROL COUNTERSINK CUBIC CUSTOM	GA GALV GC GEN GL GLB GND GR GT

DBA	DEFORMED BAR ANCHOR	HAS
DBL	DOUBLE	HC
DEFL	DEFLECTION	HCP
DEMO	DEMOLITION	HDD
DEPT	DEPARTMENT	HDR
DETL	DETAIL	HEX
DETE		HM
	DOUG FIR (DOUGLAS FIR)	
DIA	DIAMETER	HORIZ
DIAG	DIAGONAL	HSS
DIAPH	DIAPHRAGM	HT
DIM	DIMENSION	HVAC
DKG	DECKING	
DL	DEAD LOAD	IBC
DWG	DRAWING	ICF
DWGS	DRAWINGS	ID
DWL	DOWEL	IN
DIIL	DOWLE	INFO
EIFS	EXTERIOR INSULATED FINISH SYSTEM	
		INSP
ELEV	ELEVATOR	INSUL
ENGR	ENGINEER	INT
EOR	ENGINEER OF RECORD	
EQ	EQUAL	JST
EQPT	EQUIPMENT	JT
ES	EACH SIDE	
EW	EACH WAY	к
EXIST	EXISTING	KIP
EXP	EXPANSION	
EXPO	EXPOSED	L
		_
EXT	EXTERIOR	LAM
		LAT
F TO F	FACE TO FACE	LB
FAB	FABRICATIONS / FABRICATED	LF
FB	FLAT BAR	LIN
FDTN	FOUNDATION	LIN FT
FE	FROELICH ENGINEERS	LL
FF	FINISH FLOOR	LLH
FFE	FINISH FLOOR ELEVATION	LLV
FIN	FINISH	LNTL
FLR	FLOOR	LONG
FOC	FACE OF CONCRETE	LSL
FOF	FACE OF FINISH	LT WT
FOM	FACE OF MASONRY	LVL
FOS	FACE OF STUD	
FR	FIRE RATED, FIRE RESISTIVE	MANUF
FRM	FRAMED, FRAMING	MAX
FRR	FIRE RESISTANCE RATED	MB
FRT	FIRE RETARDANT TREATED	MECH
FT	FOOT, FEET	MEZZ
FTG	FOOTING	MFR
	FURRING	MIN
FUT	FUTURE	MISC
		MTL
GA	GAUGE	MUL
GALV	GALVANIZED	
GC	GENERAL CONTRACTOR	Ν
GEN	GENERAL	NIC
GL	GLU-LAMINATED	NO
GLB		NOM
GND	GROUND	NTS
		6171
GR	GRADE	• •
GT	GIRDER TRUSS	OC
GYP	GYPSUM	

GYP BD GYPSUM BOARD

DEFORMED BAR ANCHOR

HAS

IZ	HEADED ANCHOR STUD HOLLOW CORE HOLLOW CORE PLANK HEADED ANCHOR STUD HEADER HEXAGONAL HOLLOW METAL HORIZONTAL
5	HOLLOW STRUCTURAL SHAPE HEIGHT HEATING, VENTILATION, AIR CONDITIONING
L	INTERNATIONAL BUILDING CODE INSULATED CONCRETE FORMS INSIDE DIAMETER INCH, INCHES INFORMATION INSPECTION INSULATION INTERIOR
	JOIST JOINT, JOINTS
	KILOPOUND (1000 POUNDS) KILOPOUND (1000 POUNDS)
	ANGLE, LEFT, LENGTH LAMINATE, LAMINATED LATERAL POUND LINEAL FEET, LINEAR FOOTAGE
Т	LINEAR LINEAL FEET, LINEAR FOOTAGE
	LIVE LOAD LONG LEG HORIZONTAL LONG LEG VERTICAL LINTEL
	LONGITUDINAL LAMINATED STRAND LUMBER
Т	LIGHTWEIGHT LAMINATED VENEER LUMBER
UF	MANUFACTURER, MANUFACTURED MAXIMUM MACHINE BOLT
H Z	MECHANICAL MEZZANINE MANUFACTURER, MANUFACTURED MINIMUM
;	MISCELLANEOUS METAL MULLION
	NORTH NOT IN CONTRACT NUMBER NOMINAL
	NOT TO SCALE ON CENTER

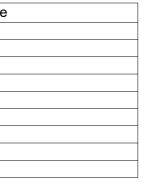

	OD	OUTSIDE DIAMETER	THK	THICK
	OH	OVERHEAD	THRD	THREADED
	OPNG	OPENING	ТОВ	TOP OF BEAM
	OPP		TOC	TOP OF COLUMN, TOP OF CURB
	OSWJ	OPEN WEB STEEL JOIST	TOF	TOP OF FOOTING
			TOJ	TOP OF JOIST
	P/L	PROPERTY LINE	TOL	TOP OF LINTEL, LANDING
	PAF	POWDER ACTUATED FASTENERS	TOL	TOLERANCE
	PC	PRECAST	TOP	TOP OF PIER, TOP OF PLATE
	PCF	POUNDS PER CUBIC FOOT	TOPV	TOP OF PAVEMENT
NG	PERF	PERFORATE, PERFORATED, PERFORMANCE	TOS	TOP OF SLAB, TOP OF STEEL
	PERIM	PERIMETER	TOW	TOP OF WALL
	PE	PROFESSIONAL ENGINEER	TRANS	TRANSVERSE
	PERP	PERPENDICULAR	TRANSL	TRANSLUCENT
	PL	PLATE	TYP	TYPICAL
	PLF	POUNDS PER LINEAL FOOT		
	PLWD	PLYWOOD	UNO	UNLESS NOTED OTHERWISE
	PNL	PANEL	UTIL	UTILITY
	PREFAB	PREFABRICATED		
	PREFIN	PREFINISHED	VERT	VERTICAL
	PSF	POUNDS PER SQUARE FOOT	VFY	VERIFY
	PSI	POUNDS PER SQUARE INCH	VIF	VERIFY IN FIELD
	PSL	PARALLEL STRAND LUMBER		
	PT	PRESERVATIVE TREATED, POST-TENSIONED	W/	WITH
			W/O	WITHOUT
	QTY	QUANTITY	WD	WOOD
			WF	WIDE FLANGE (STRUCTURAL STEEL)
	RAD	RADIUS	WP	WORK POINT OR WORKING POINT
	RCP	REFLECTED CEILING PLAN	WR	WATER RESISTANT, WATER RESISTIVE
	RD	ROOF DRAIN	WS	WATERSTOP
	REF	REFERENCE	WT	WEIGHT
	REINF	REINFORCED, REINFORCING	WWF	WOVEN WIRE FABRIC
	REQ	REQUIREMENTS		
	REQD	REQUIRED		
	REV	REVISION		
	RO	ROUGH OPENING		
	SCHED	SCHEDULE		
	SE	STRUCTURAL ENGINEER		
	SECT	SECTION		
	SF	SQUARE FEET		
	SGL	SINGLE		
	SHT	SHEET		
	SHTG	SHEATHING		
	SIM	SIMILAR		
	SIMP	SIMPSON STRONG TIE		
	SL	SNOW LOAD		
	SOG	SLAB ON GRADE		
	SPEC	SPECIFICATION, SPECIFICATIONS		
	SQ	SQUARE		
	SS	STAINLESS STEEL		
	STD	STANDARD		
	STIFF	STIFFENER		
	STL	STEEL		
	STRUCT	STRUCTURAL		
	SUSP	SUSPENDED		
	SYM	SYMMETRICAL		
	T AND B	TOP AND BOTTOM		
				FOUN

T AND G TONGUE AND GROOVE

TANGENT

TAN

Sheet Number	Sheet Name
S000	COVER SHEET
S001	GENERAL STRUCTURAL NOTES
S002	GENERAL STRUCTURAL NOTES
S101	FOUNDATION PLAN
S102	ROOF FRAMING PLAN
S500	FOUNDATION DETAILS
S600	TYPICAL FRAMING DETAILS
S700	ROOF FRAMING DETAILS
S800	SHEAR WALL DETAILS


FOUNDATION, PT, REBAR AND FRAMING PLAN CUTS - ELEVATION DIAGRAM

TROUT CREEK SDA SCHOOL

3020 HIGHWAY 200 TROUT CREEK, MT 59874

COMPLETE LEGEND

-	- INDICATES FOOTING TYPE, REF SCHEDULE
	- INDICATES COLUMN BELOW
	- INDICATES COLUMN ABOVE
× <u> </u>	- INDICATES INTERIOR STRUCTURAL STUD/ BEARING WALL
	- INDICATES WOOD SHEATHED SHEAR WALL
	- INDICATES EXTERIOR STRUCT WALL
	- INDICATES INTERIOR ARCH WALL
W-	- INDICATES STUD/ BEARING WALL TYPE
	- INDICATES SHEAR WALL TYPE. REF SHEAR WALL SCHEDULE ON S500 AND DETAIL 1 / S800
	- INDICATES HOLDOWN TYPE. REF HOLDOWN SCHEDULE ON S500, DETAILS 4 / S800 AND 5 / S800
	- - INDICATES DIFFERENT HOLDOWN TYPES AT EACH END OF SHEAR WALL
J# AT XX" OC	- INDICATES JOIST TYPE AND SPACING, REF PLANS & JOIST FRAMING SCHEDULE
	- INDICATES DIRECTION DECK OR SHEATHING TO SPAN
•	- INDICATES ELEVATION
7777	- INDICATES STEP IN ELEVATION
XX PSF	- INDICATES SNOW DRIFT LOAD. JOIST MANUFACTURER SHALL MAKE PROVISION FOR THESE IN THE DESIGN OF THE JOISTS REF PLANS FOR LOAD & EXTENT.
	- INDICATES ROOF OVERFRAMING. REF DETAIL 1 / S700

PERMIT SET

NO	DATE	DESCRIPTION

PROJECT MANAG	BER: BL
DESIGNER:	BL
DRAWN BY:	KR
PROJECT NO:	24-B101
DATE:	04-30-2024
SCALE:	AS SHOWN

SHEET TITLE:

SHEET NUMBER:

S000

PLAN

PROJECT DESCRIPTION:

- NEW 1-STORY SCHOOL BUILDING CONVENTIONAL SPREAD AND STRIP CONCRETE FOUNDATIONS
- CONCRETE SLAB-ON-GRADE
- WOOD 2X STUD WALLS SHEATHED WITH WOOD SHEATHED PANELS
- PRE-MANUFACTURED WOOD TRUSS SYSTEM

<u>GENERAL:</u>

- 1. THE STRUCTURAL DRAWINGS ARE A PORTION OF THE CONTRACT DOCUMENTS AND ARE INTENDED TO BE USED IN CONJUNCTION WITH THE ARCHITECTURAL, CIVIL, MECHANICAL, AND ELECTRICAL DRAWINGS. THE CONTRACTOR IS RESPONSIBLE FOR COORDINATING THE REQUIREMENTS FROM THE ENTIRE SET OF CONTRACT DOCUMENTS (INCLUDING THE PROJECT SPECIFICATIONS) INTO THEIR WORK
- 2. NOTES AND DETAILS ON THE STRUCTURAL DRAWINGS SHALL TAKE PRECEDENCE OVER THE GENERAL STRUCTURAL NOTES AND TYPICAL DETAILS.
- 3. CONTRACTOR SHALL VERIFY ALL DIMENSIONS AND ELEVATIONS PROVIDED ON STRUCTURAL DRAWINGS WITH ALL DISCIPLINES INCLUDING, BUT NOT LIMITED TO ARCHITECTURAL, GEOTECHNICAL ENGINEER, AND CIVIL ENGINEER PRIOR TO CONSTRUCTION.
- 4. DETAILS ON THESE PLANS ARE INTENDED TO DEPICT THE GENERAL CONSTRUCTION METHODS FOR THIS STRUCTURE. CONNECTIONS, DETAILS AND CONDITIONS NOT SPECIFICALLY SHOWN THAT ARE SIMILAR TO THOSE THAT ARE SPECIFIED SHALL BE ASSUMED ONE AND THE SAME. IF QUESTIONS REGARDING THE APPLICATION OF DETAILS ARE ENCOUNTERED, NOTIFY THE ARCHITECT/ENGINEER FOR CLARIFICATION IN A TIMELY MANNER PRIOR TO BID OPENING.

CODE REQUIREMENTS:

- 1. CONFORM TO THE 2021 INTERNATIONAL BUILDING CODE (IBC).
- 2. ALL REFERENCE TO OTHER CODES AND STANDARDS (ACI, AISC, AWS, NDS, ASTM, ETC.) SHALL BE FOR THE EDITIONS NOTED IN CHAPTER 35 OF THE IBC/OSCC.

TEMPORARY CONDITIONS:

- 1. THE STRUCTURE HAS BEEN DESIGNED TO FUNCTION AS A UNIT UPON COMPLETION. THE CONTRACTOR IS RESPONSIBLE FOR FURNISHING ALL TEMPORARY BRACING AND / OR SUPPORT REQUIRED AS A RESULT OF THE CONTRACTOR'S CONSTRUCTION METHODS AND / OR SEQUENCES.
- 2. CONTRACTOR'S CONSTRUCTION METHODS AND / OR SEQUENCES SHALL RECOGNIZE AND CONSIDER THE EFFECTS OF THERMAL MOVEMENTS OF STRUCTURAL ELEMENTS DURING THE CONSTRUCTION PERIOD.

DESIGN CRITERIA:

DESIGN WAS BASED ON THE STRENGTH AND DEFLECTION CRITERIA OF THE IBC. IN ADDITION TO THE DEAD LOADS, THE FOLLOWING LOADS AND ALLOWANCES WERE USED FOR DESIGN IN ACCORDANCE WITH THE IBC:

	DESIGN CRITERIA		
	GEOTECHNICAL CRITERIA		
LLOWABLE SOIL BEARING 1,500 PSF (INCREASE 33 PERCENT FOR LOAD COMBINATION PRESSURE INCLUDING WIND AND SEISMIC)			
	BUILDING RISK CATEGORY		
RISK CATEGORY	Ι		
	LIVE LOAD CRITERIA		
FLOOR LIVE LOADS	UNIFORM LOAD (PSF)	CONCENTRATED LOAD (LBS)	
CLASSROOMS	40	1000	
CORRIDORS	100	1000	
	ROOF CRITERIA		
ROOF LIVE LOAD	20 PSF		
	SNOW CRITERIA		
DESIGN ROOF SNOW LOAD	70 PSF MINIMUM IN ACCORE	DANCE WITH THE IBC	
SNOW DRIFT	PER IBC AS SHOWN ON PLANS (IN A SNOW LOA		
GROUND SNOW LOAD	P _g = 90 PSF IN ACCORDANCE WIT SNOW LOAD FINDER	TH MONTANA GROUND	
FLAT ROOF SNOW LOAD	P f	= 70 PSF	
SNOW EXPOSURE FACTOR		= 1.0	
SNOW LOAD IMPORTANCE FACTOR	I = 1.0		
THERMAL FACTOR	C + = 1.1		
	WIND CRITERIA		
MAIN WIND FORCE RESISTING SYSTEM 105 MPH BASIC WIND SPEED			
COMPONENTS AND CLADDING 105 MPH BASIC WIND SPEED			
EXPOSURE CATEGORY B			
GUST/INTERNAL PRESSURE GC _{pi} = +/- 0.18			
	SEISMIC CRITERIA		
SITE CLASS	D - Default		
IMPORTANCE FACTOR	l _e	= 1.0	
SEISMIC DESIGN CATEGORY	D		
MCE SPECTRAL ACCELERATIONS	S _s = 0.424	S = 0.136	
SITE COEFFICIENTS	$F_a = 1.461$ $F_V = 2.327$		
DESIGN SPECTRAL ACCELERATIONS	$S_{DS} = 0.413$ $S_{D1} = 0.212$		
ANALYSIS PROCEDURE	EQUIVALENT LATERAL FORCE, RE		
	NORTH-SOUTH DIRECTION	EAST-WEST DIRECTION	
SEISMIC LOAD RESISTING SYSTEM	LIGHT FRAMED WOOD SHEAR WALLS SHEAR WALLS		
RESPONSE MODIFICATION FACTOR	R = 6.5 R = 6.5		
SEISMIC RESPONSE COEFFICIENT	C = 0.064 C = 0.064		
ESIGN BASE SHEAR V = 15 KIPS V = 15 KIPS			
REDUNDANCY FACTOR	rbo = 1.2	rbc = 1.2	

rho = 1.3

rho = 1.3

SUBMITTALS:

- 1. REVIEW OF THE SUBMITTALS IS ONLY FOR REVIEW OF GENERAL CONFORMANCE WITH THE DESIGN CONCEPT OF THE PROJECT AND GENERAL COMPLIANCE WITH THE INFORMATION GIVEN IN THE CONTRACT DOCUMENTS. NO RESPONSIBILITY IS ASSUMED BY THE STRUCTURAL ENGINEER FOR CORRECTNESS, DIMENSIONS OR DETAILS CONTAINED WITHIN THE SUBMITTALS. THE CONTRACTOR IS SOLEY RESPONSIBLE FOR CONFIRMING AND CORRELATING ALL QUANTITIES AND DIMENSIONS; SELECTING FABRICATION PROCESSES AND TECHNIQUES OF CONSTRUCTION; COORDINATING THEIR WORK WITH THAT OF ALL OTHER TRADES; AND PERFORMING THEIR WORK IN A SAFE AND SATISFACTORY MANNER.
- 2. REVIEW OF THE SUBMITTALS DOES NOT RELIEVE THE CONTRACTOR FROM COMPLIANCE WITH THE REQUIREMENTS OF CONTRACT DOCUMENTS AND SPECIFICATIONS. THE REVIEW OF A SUBMITTAL SHALL NOT BE CONSIDERED A WAIVER OF THE REQUIREMENT OF STRICT COMPLIANCE WITH THE CONTRACT DOCUMENTS AND INTENT OF THE PROJECT. ALL MINIMUM CONDITIONS AND REQUIREMENTS SPECIFIED ON THE STRUCTURAL DRAWINGS, GOVERNING BUILDING CODES, AND REFERENCED STANDARDS
- 3. SUBMITTALS AND DRAWINGS SHALL BE GENERATED BY AND ORIGINATE FROM THE CONTRACTOR. STRUCTURAL AUTOCAD/REVIT BACKGROUNDS WILL NOT BE RELEASED BY FE AND MAY NOT BE USED FOR THE GENERATION OF SUBMITTALS AND DRAWINGS. IT IS
- 4. SUBMITTALS SHALL BE REVIEWED FOR CONFORMANCE WITH THE CONTRACT DOCUMENTS AND STAMPED BY THE GENERAL CONTRACTOR PRIOR TO SUBMISSION TO THE DESIGN TEAM. SUBMITTALS THAT ARE NOT REVIEWED AND STAMPED BY THE GENERAL CONTRACTOR WILL BE RETURNED WITHOUT REVIEW.
- 5. SUBMITTALS SHALL BE SUBMITTED TO THE DESIGN TEAM PRIOR TO THE FABRICATION AND CONSTRUCTION OF ALL STRUCTURAL ITEMS INCLUDING THE FOLLOWING:

SUBMITTALS			
ITEM	SUBMITTAL	DEFERRED SUBMITTAL	COMMENTS
PREMANUFACTURED WOOD TRUSSES	-	Х	SEE NOTE A

A. DESIGN DRAWINGS, SHOP DRAWINGS, AND CALCULATIONS FOR THE DESIGN AND FABRICATION OF ITEMS THAT ARE DESIGNED BY OTHERS SHALL BEAR THE SEAL AND SIGNATURE OF A PROFESSIONAL ENGINEER REGISTERED IN THE STATE WHERE THE PROJECT IS LOCATED. CALCULATIONS SHALL BE INCLUDED FOR ALL CONNECTIONS TO THE STRUCTURE CONSIDERING LOCALIZED EFFECTS ON STRUCTURAL ELEMENTS INDUCED BY THE CONNECTION LOADS. DESIGN SHALL BE BASED UPON THE REQUIREMENTS OF THE IBC/OSSC AND AS NOTED UNDER "DESIGN CRITERIA."

FOUNDATIONS:

- 1. FOUNDATION SIZES ARE BASED UPON AN ASSUMED MAXIMUM TOTAL LOAD BEARING SOIL PRESSURE = 1,500 PSF FOR BEARING ON NATIVE SOILS/COMPACTED FILL.
- 2. ALL FOOTINGS SHALL BE FOUNDED ON FIRM UNDISTURBED ORIGINAL SOIL FREE OF ORGANIC MATTER OR ENGINEERED FILL.
- 3. ALL FOOTINGS SHALL BE A MINIMUM OF 36" BELOW FINAL GRADES. 4. ALL DISTURBED SOIL SHALL BE REMOVED BY HAND OPERATION FROM FOOTING
- EXCAVATIONS TO NEAT LINES AND REPLACED WITH ENGINEERED FILL IF NECESSARY. 5. ENGINEERED FILL SHOULD BE COMPACTED IN HORIZONTAL LIFTS NOT EXCEEDING 12 INCHES. ENGINEERED FILL SHALL CONSIST OF 3/4" MINUS CLEAN, WELL-GRADED SAND, SAND AND GRAVEL, OR CRUSHED ROCK. ENGINEERED FILL SHALL BE COMPACTED TO 95
- 6. BOTTOM OF FOOTINGS SHALL BE STEPPED FROM ELEVATION TO ELEVATION AT 2'-0"
- HORIZONTAL TO 1'-0" VERTICAL STEPS. 7. GROUND ADJACENT TO THE FOUNDATION SHALL BE SLOPED AWAY FROM THE BUILDING AT
- LEAST 5 PERCENT SLOPE FOR A MINIMUM DISTANCE OF 10 FEET FROM THE BUILDING. NOTIFY EOR IF CONDITIONS VARY.

CONCRETE:

STRUCTURAL CONCRETE" AND CHAPTER 19 OF THE IBC/OSSC. 2. CONCRETE STRENGTHS SHALL BE VERIFIED BY STANDARD 28-DAY CYLINDER TESTS PER ASTM C39, UNLESS NOTED OTHERWISE, AND SHALL BE AS FOLLOWS:

	cc	DNCRETE S	TRENGTHS		
	DESCRIPTION	ťc (PSI)	WATER - CEMENT RATIO BY WEIGHT	ENTRAINED AIR (PERCENT)	OTHER
	FOOTINGS, STEMWALLS	3,000	0.53	2 +/- 1.5	
	INTERIOR SLAB-ON-GRADE	4,000	0.48		SEE NOTE D
NO	TES:				
A. VERIFY WATER/CEMENT RATIO WITH FLOOR COVERING MANUFACTURER FOR CONCRETE FLOORS WITH MOISTURE SENSITIVE FLOOR COVERINGS.					
В.	B. CONCRETE MIXES SHALL BE NORMAL WEIGHT AND CONTAIN PORTLAND CEMENT CONFORMING TO ASTM C150 FOR TYPE I, OR TYPE II.				
C.					
D. SHRINKAGE RATE, AS DETERMINED BY ASTM C157, OF CONCRETE SHALL NOT EXCEED 0.045 PERCENT AT 28 DAYS. USE A SHRINKAGE REDUCING ADMIXTURE TO ACHIEVE THIS VALUE, IF REQUIRED.					
E. MAXIMUM AGGREGATE SIZE SHALL BE 3/4" AND NOT MORE THAN ONE-QUARTER OF THE REINFORCEMENT CLEAR SPACING.					

3. MINIMUM CEMENT CONTENT PER CUBIC YARD SHALL BE AS FOLLOWS:

MINIMUM CEMENT CONTENT				
f'c (PSI) MINIMUM CEMENT CONTENT PER CUBIC YARD				
3,000	470 LBS.			
4,000	550 LBS.			
5,000 630 LBS.				
NOTES:				

- A. FLYASH CONFORMING TO ASTM C618 "TYPE F," OR "TYPE C" MAY BE USED TO REPLACE UP TO 20 PERCENT OF THE CEMENT CONTENT, PROVIDED THAT THE MIX STRENGTH IS SUBSTANTIATED BY TEST DATA.
- 4. NO WATER MAY BE ADDED TO CONCRETE IN THE FIELD UNLESS REQUESTED BY CONCRETE SUPPLIER AND APPROVED IN WRITING BY THE ENGINEER OF RECORD. 5. CONCRETE SHALL BE PLACED IN ONE CONTINUOUS OPERATION WHEREVER PRACTICAL CONSTRUCTION JOINTS IN BEAMS, JOISTS, AND SLABS SHALL BE LOCATED AT MID-SPAN WITH REINFORCING CONTINUING THROUGH AS IF THE JOINT DID NOT OCCUR. VERTICAL
- PILASTERS. 6. THE CONTRACTOR SHALL LAYOUT OF CONSTRUCTION AND CONTROL JOINTS FOR CONCRETE SLABS-ON-GRADE. THE JOINTS SHALL BE LOCATED AT MAXIMUM 12'-0" ON-CENTER EACH WAY FORMING RECTANGLES WITH A LENGTH TO WIDTH RATIO NOT EXCEEDING 1.5 IN ANY DIRECTION. CONTROL JOINTS SHALL INTERSECT AT COLUMN BLOCKOUTS, AT ENDS OF BEARING WALLS, AND AT ALL RE-ENTRANT CORNERS IN THE
- 7. ALL BOLTS AND/OR ANCHOR RODS EMBEDDED INTO CONCRETE SHALL CONFORM TO ASTM SPECIFICATION F1554 GRADE 36 UNLESS NOTED OTHERWISE ON THE STRUCTURAL DRAWINGS
- BE HAND SET, OR WET SET. 9. PREPARATION, CONSTRUCTION AND PROTECTION OF CONCRETE DURING COLD WEATHER

REDUNDANCY FACTOR

SHALL BE MET REGARDLESS OF THE INFORMATION INDICATED ON THE SUBMITTALS.

THE CONTRACTOR'S RESPONSIBILITY TO GENERATE THEIR SUBMITTALS AND DRAWINGS.

FAL	S
	5

PERCENT MAXIMUM DRY DENSITY AS OBTAINED BY ASTM D698 STANDARD PROCTOR.

1. ALL CONCRETE WORK SHALL CONFORM TO "ACI 318--BUILDING CODE REQUIREMENTS FOR

CONSTRUCTION JOINTS IN WALLS SHALL BE LOCATED MIDWAY BETWEEN COLUMNS OR

8. ANCHOR RODS ARE TO BE LOCATED BY MEANS OF TEMPLATE. ANCHOR RODS SHALL NOT

OR HOT WEATHER SHALL CONFORM TO ACI 318 26.5.4, 26.5.5 AND ACI 306R AND 305R.

REINFORCING STEEL:

1. REINFORCING STEEL SHALL BE DETAILED, FABRICATED, AND PLACED IN ACCORDANCE TO "ACI 318—BUILDING CODE REQUIREMENTS FOR STRUCTURAL CONCRETE" AND "ACI 315—MANUAL OF STANDARD PRACTICE FOR DETAILING REINFORCED CONCRETE STRUCTURES."

2. ALL REINFORCING STEEL SHALL CONFORM TO THE FOLLOWING SPECIFICATIONS AND GRADES UNLESS NOTED OTHERWISE ON THE STRUCTURAL DRAWINGS:

REINFORCING SPECIFICATIONS AND GRADES		
USE	ASTM SPECIFICATION AND GRADE	
SMOOTH WELDED WIRE FABRIC	ASTM A1064	
FOUNDATION REINFORCEMENT	ASTM A615, GRADE 60	
REINFORCING STEEL SHALL BE SECURELY TIED IN-PLACE WITH #16 ANNEALED IRON WIRE.		
BARS IN BEAMS, SLABS, AND FOUNDATIONS SHALL BE SUPPORTED ON WELL-CURED		
SMOOTH WELDED WIRE FABRIC FOUNDATION REINFORCEMENT REINFORCING STEEL SHALL BE SECURELY TIED IN-PLACE WITH #	GRADE ASTM A1064 ASTM A615, GRADE 60 16 ANNEALED IRON WIRE. ED ON WELL-CURED	

CONCRETE BLOCKS, OR APPROVED METAL CHAIRS, AS SPECIFIED BY THE "CRSI MANUAL OF STANDARD PRACTICE," MSP-1. 4. ALL REINFORCEMENT SHALL BE FREE OF LOOSE MILL AND RUST SCALE, OIL, DIRT, OR

COATINGS OF ANY KIND THAT REDUCE THE BOND STRENGTH TO THE CONCRETE.

5. REINFORCEMENT STEEL SHALL NOT BE DISPLACED OR ALTERED FOR THE CONVENIENCE OF

OTHER TRADES UNLESS APPROVED BY THE STRUCTURAL ENGINEER OF RECORD. 6. "WET SETTING" OF REINFORCING STEEL, ANCHOR RODS, EMBEDDED PLATES AND INSERTS IS NOT PERMITTED.

7. ALL REINFORCEMENT SHALL BE CONTINUOUS WITH ADEQUATE LAP LENGTHS AT SPLICE

LOCATIONS.

8. MINIMUM LAP OF WELDED WIRE FABRIC SHALL BE 12". 9. THE FOLLOWING MINIMUM LAP SPLICE LENGTHS SHALL BE PROVIDED FOR ALL REINFORCING STEEL:

	TYPICAL LAP SPLICE SCHEDULE (IN)						
BAR SIZE	3,000 PSI			4,000 PSI		5,000 PSI	
DAINSIZE	TOP BARS	TOP BARS OTHER BARS		OTHER BARS	TOP BARS	OTHER BARS	
#3	28	22	24	19	22	17	
#4	37	29	32	25	29	22	
#5	47	36	40	31	36	28	
#6	56	43	48	37	43	33	
NOTES:							

A. TOP BARS ARE HORIZONTAL BARS WITH MORE THAN 12" OF CONCRETE CAST BELOW THE

B. VALUES ARE FOR UNCOATED BARS.

10. THE FOLLOWING MINIMUM CONCRETE COVER SHALL BE PROVIDED FOR ALL REINFORCING STEEL:

MINIMUM CONCRETE COVER (CAST-IN-PLACE)

USE	COVER
SLAB BARS	1"
EXTERIOR WALL FACES	1-1/2" (#5 AND SMALLER)
(EXPOSED TO EARTH, OR WEATHER)	2" (#6 AND LARGER)
CONCRETE CAST AGAINST EARTH	3"

11. PROVIDE "CORNER" BAR AT CORNERS AND INTERSECTIONS FOR WALLS AND FOUNDATIONS EQUAL IN SIZE, NUMBER AND SPACING TO HORIZONTAL REINFORCING. SIZE CORNER BAR TO PROVIDE A FULL LAP WITH HORIZONTAL REINFORCEMENT ON EACH LEG.

CONCRETE ACCESSORIES:

1. APPROVED POST-INSTALLED ANCHORS ARE AS FOLLOWS:

TYPE	ANCHOR	ICC REPORT
	SIMPSON TITEN HD	ICC ESR-2713
CONCRETE SCREWS	DEWALT SCREW-BOLT+	ICC ESR-3889
	HILTI KWIK HUS-EZ	ICC ESR-3027
	SIMPSON SET-3G	ICC ESR-4057
EPOXY	DEWALT PURE110+	ICC ESR-3298
ADHESIVE	DEWALT PURE220+	ICC ESR-5144
	HILTI HIT-RE 500V3	ICC ESR-3814
	SIMPSON AT-XP	IAPMO UES ER-263
ACRYLIC ADHESIVE	DEWALT AC200+	ICC ESR-4027
ADHESIVE	HILTI HY 200	ICC ESR-3187
EXPANSION ANCHORS	SIMPSON STRONG-BOLT II	ICC ESR-3037
	DEWALT POWER STUD + SD2	ICC ESR-2502
	HILTI KWIK BOLT-TZ	ICC ESR-1917

A. ANCHOR LOCATIONS AND REQUIREMENTS SHALL CONFORM TO THOSE NOTED SPECIFICALLY ON THE STRUCTURAL DRAWINGS. ALL OTHER LOCATIONS REQUIRE PRIOR APPROVAL

B. ALL ANCHORS SHALL BE INSTALLED IN STRICT CONFORMANCE TO THE APPLICABLE ICC REPORT AND MANUFACTURER'S PRINTED INSTALLATION INSTRUCTIONS. C. REINFORCEMENT SHALL NOT BE CUT IN NEW, OR EXISTING CONCRETE DURING

INSTALLATION OF POST-INSTALLED ANCHORS. CONTRACTOR SHALL LOCATE AND AVOID ALL REINFORCEMENT.

D. ANCHORS THAT ARE LEFT EXPOSED TO WEATHER SHALL BE STAINLESS STEEL, OR HOT-DIPPED GALVANIZED.

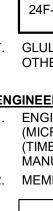
E. ANCHORS SHALL BE INSTALLED ONLY INTO CONCRETE THAT HAS ATTAINED FULL CONCRETE DESIGN STRENGTH, f'c.

2. ADHESIVE ANCHORS SHALL BE INSTALLED ONLY IN DRY, HAMMER-DRILLED HOLES.

3. INSTALLATION OF ADHESIVE ANCHORS SHALL BE PERFORMED ONLY BY ACI/CRSI CERTIFIED ADHESIVE ANCHOR INSTALLERS.

4. ADHESIVE ANCHOR INSTALLATIONS EXCEEDING 10" EMBEDMENT IN DOWNWARD INCLINED, AND DOWNWARD ORIENTATIONS SHALL UTILIZE ADHESIVE MANUFACTURER'S PISTON PLUG AND TUBING DELIVERY SYSTEM.

SAWN FRAMING LUMBER:


1. SAWN LUMBER SHALL CONFORM TO THE WEST COAST LUMBER INSPECTION BUREAU (WCLIB) OR THE WESTERN WOODS PRODUCTS ASSOCIATION (WWPA) GRADING RULES.

2. ALL LUMBER SHALL BE THE SPECIES AND GRADES AS FOLLOWS:

SAWN LUMBER			
USE	SPECIES/GRADE	Fb (PSI)BASE VALUE	
LUMBER 2" TO 4" THICK	DOUGLAS FIR-LARCH NO.2	900	
BEAMS 5"x5" AND GREATER	DOUGLAS FIR-LARCH NO.1	1350	
POSTS	DOUGLAS FIR-LARCH NO.1	1200	

ALL DIMENSIONAL LUMBER AND TIMBERS SHALL BE KILN DRIED AND CERTIFIED IN WRITING

BY THE SUPPLIER TO BE LESS THAN 19 PERCENT MOISTURE CONTENT. 4. ALL LUMBER IN CONTACT WITH CONCRETE OR CMU SHALL BE PRESERVATIVE TREATED (PT) IN ACCORDANCE WITH THE AMERICAN WOOD PRESERVERS BUREAU (AWPB) UNLESS AN APPROVED MOISTURE BARRIER IS PROVIDED. ALL PT LUMBER SHALL BEAR THE AWPB QUALITY MARK.

COMPO NOTE: FLEX

WIDE.

GLUED LAMINATED MEMBERS:

1. GLUED LAMINATED MEMBERS SHALL BE FABRICATED IN CONFORMANCE WITH THE "AMERICAN NATIONAL STANDARD FOR STRUCTURAL GLUED LAMINATED TIMBER" (ANSI/AITC A190.1), OR OTHER CODE-APPROVED DESIGN, MANUFACTURING AND QUALITY ASSURANCE PROCEDURES.

ADHESIVE SHALL BE WET-USE EXTERIOR WATERPROOF GLUE.

3. EACH MEMBER SHALL BEAR AN AITC OR APA-EWS IDENTIFICATION MARK OR BE ACCOMPANIED BY A CERTIFICATE OF CONFORMANCE.

4. ONE COAT OF END SEALER SHALL BE APPLIED IMMEDIATELY AFTER TRIMMING IN EITHER THE SHOP OR FIELD.

5. NOTCHING AND/OR BORING OF GLUED LAMINATED MEMBERS (EITHER IN THE SHOP, OR FIELD) IS STRICTLY PROHIBITED UNLESS AS SPECIFICALLY DETAILED IN THE STRUCTURAL DRAWINGS OR APPROVED BY THE STRUCTURAL ENGINEER OF RECORD. GLUED LAMINATED TIMBER BEAMS SHALL BE WESTERN SPECIES WITH THE FOLLOWING STRENGTH PROPERTIES, UNLESS OTHERWISE NOTED ON PLANS:

GLUED LAMINATED MEMBERS

MBINATION SYMBOL SPECIES)	USE	MODULUS OF ELASTICITY (PSI)	FLEXURAL STRESS (PSI)	HORIZONTAL SHEAR STRESS (PSI)
-V4 (DF/DF)	SIMPLE SPAN	1,800,000	2,400	265
-V8 (DF/DF)	CANTILEVERED OR CONTINUOUS	1,800,000	2,400	265

7. GLULAM MEMBERS SHALL BE OF THE FOLLOWING APPEARANCE GRADE(S), UNLESS OTHERWISE NOTED ON PLANS: FRAMING OR INDUSTRIAL.

ENGINEERED COMPOSITE LUMBER:

1. ENGINEERED COMPOSITE WOOD PRODUCTS SUCH AS LAMINATED VENEER LUMBER (MICROLAM), PARALLEL STRAND LUMBER (PARALAM), AND LAMINATED STRAND LUMBER (TIMBERSTRAND) SHALL BE OF THE SIZE AND TYPE SHOWN ON THE DRAWINGS, MANUFACTURED BY TRUS-JOIST OR AN APPROVED EQUAL. 2. MEMBERS SHALL HAVE THE FOLLOWING MINIMUM DESIGN PROPERTIES:

ENGINEERED COMPOSITE LUMBER

	MODULUS OF ELASTICITY	ALLOWABLE FLEXURAL	
OSITE LUMBER TYPE	(PSI)	STRESS (PSI)	
LSL	1,500,000	2,350	
LVL	1,900,000	2,600	
XURAL STRESSES NOTED ABOVE ARE FOR 12" DEEP MEMBERS. DEEPER			

MEMBERS SHALL BE DESIGNED FOR REDUCED STRESSES IN ACCORDANCE WITH THE MANUFACTURER'S REQUIREMENTS.

WOOD STRUCTURAL PANEL SHEATHING:

1. WOOD STRUCTURAL ROOF AND FLOOR PANELS SHALL CONFORM TO THE REQUIREMENTS OF THE "U.S. PRODUCT STANDARD PS 1 FOR CONSTRUCTION AND INDUSTRIAL PLYWOOD," THE "U.S. PRODUCT STANDARD PS 2 PERFORMANCE STANDARD FOR WOOD-BASED STRUCTURAL USE PANELS," OR THE "APA PRP-108 PERFORMANCE STANDARDS." WOOD STRUCTURAL WALL PANELS SHALL CONFORM TO THE REQUIREMENTS OF THE "U.S. PRODUCT STANDARD PS 2 PERFORMANCE STANDARD FOR WOOD-BASED STRUCTURAL USE PANELS," OR THE "APA PRP-108 PERFORMANCE STANDARDS."

3. UNLESS NOTED OTHERWISE ON THE DRAWINGS, ALL PANELS SHALL BE APA RATED SHEATHING, EXPOSURE 1, OF THE THICKNESS AND SPAN RATING AS FOLLOWS:

WOOD STRUCTURAL PANEL SHEATHINGUSETHICKNESS/RATINGROOF SHEATHING19/32"-INDEX 40/20WALL SHEATHING1/2"-INDEX 32/16 OSB			
ROOF SHEATHING 19/32"-INDEX 40/20	WOOD STRUCTURAL PANEL SHEATHING		
	USE	THICKNESS/RATING	
WALL SHEATHING 1/2"-INDEX 32/16 OSB	ROOF SHEATHING	19/32"-INDEX 40/20	

4. ALL FLOOR AND ROOF SHEATHING SHALL BE INSTALLED WITH FACE GRAIN PERPENDICULAR TO SUPPORTS AND WITH END JOINTS STAGGERED.

5. ALL FLOOR AND ROOF SHEATHING JOINTS SHALL BE INSTALLED WITH A 1/8" GAP AS REOCMMENDED BY APA UNLESS NOTED OTHERWISE BY THE SHEATHING MANUFACTURER.

6. ROOF SHEATHING SHALL BE BLOCKED, OR HAVE EDGES SUPPORTED BY PLYCLIPS. SHEAR WALL SHEATHING SHALL BE PLYWOOD OR OSB PANELS CONFORMING TO THE REQUIREMENTS FOR ITS TYPE SPECIFIED IN DOC PS1 OR PS2. SHEAR WALL SHEATHING SHALL BE INSTALLED EITHER HORIZONTALLY OR VERTICALLY

AND BE BLOCKED AT ALL PANEL EDGES. SHEET SIZES SHALL BE 4'X8' UNLESS AT BOUNDARIES OR FRAMING CHANGES. DO NOT PIECE TOGETHER AROUND OPENINGS -INSTALL FULL SHEETS AND CUT OUT FOR OPENINGS. REFERENCE PLANS FOR ADDITIONAL REQUIREMENTS.

9. AT WALL SHEATHING, ADJUST LAYOUT TO ELIMINATE SHEATHING PIECES LESS THAN 16" 10. AT ROOF SHEATHING, ADJUST LAYOUT TO ELIMINATE SHEATHING PIECES LESS THAN 24"

WIDE. AT OVERHANGS AND EAVES AT THE ROOF, PIECES SHALL BE NO LESS THAN 48" WIDE AND SHALL BE SUPPORTED BY AT LEAST 2 ROOF MEMBERS (ROOF JOISTS OR TRUSSES).

11. SHEATHING SHALL BE PROTECTED FROM MOISTURE DURING CONSTRUCTIONS PER THE RECOMMENDATIONS AND/OR REQUIREMETNS OF APA UNLESS DIRECTED OTHERWISE BY THE SHEATHING MANUFACTURER.

TROUT CREEK SDA SCHOOL

3020 HIGHWAY 200 TROUT CREEK, MT 59874

PERMIT SET

NO	DATE	DESCRIPTION

PROJECT MANAG	ER: BL
DESIGNER:	BL
DRAWN BY:	KR
PROJECT NO:	24-B101
DATE:	04-30-2024
SCALE:	AS SHOWN

SHEET TITLE:

GENERAL STRUCTURAL NOTES

SHEET NUMBER:

PREMANUFACTURED WOOD TRUSSES:

- 1. DESIGN OF THE PREMANUFACTURED WOOD ROOF TRUSS SYSTEM SHALL BE THE CONTRACTOR'S RESPONSIBILITY.
- 2. DESIGN SHALL CONFORM TO THE PROFILES SHOWN ON THE DRAWINGS AND THE REQUIREMENTS OF OSSC/IBC SECTION 2303.4 AND THE "DESIGN SPECIFICATIONS FOR LIGHT METAL PLATE CONNECTED WOOD TRUSSES", TPI-24 AS PUBLISHED BY THE TRUSS PLATE INSTITUTE.
- 3. THE MANUFACTURER SHALL PROVIDE SHOP DRAWINGS SHOWING LAYOUT AND ANY
- DETAILING NECESSARY FOR DETERMINING FIT AND PLACEMENT IN THE STRUCTURE. 4. METAL PLATE CONNECTED TRUSSES SHALL BE DESIGNED FOR THE FOLLOWING MINIMUM
- LOADS AND ANY SNOW DRIFTING/SLIDING SNOW INDICATED ON DRAWINGS:

TRUSS LOADING		
LOADING TYPE UNIFORMLY DISTRIBUTED LOAD (PSF)		
ROOF LIVE LOAD	20	
ROOF SNOW LOAD	70	
	EAVES: 70	
ROOF DEAD LOAD	TOP CHORD: 12	
ROOF DEAD LOAD	BOTTOM CHORD: 8	
NET WIND UPLIET	15	

IN ADDITION TO THE LOADS NOTED, ALL TRUSSES SHALL BE DESIGNED TO SUPPORT A CONCENTRATED LOAD OF 100# AT ANY LOCATION ALONG THE TOP OR BOTTOM CHORDS.

5. CONTRACTOR TO VERIFY ALL WEIGHTS AND LOCATIONS OF CONCENTRATED LOADS DUE TO ROOF TOP MECHANICAL UNITS, MECHANICAL PIPING, ELECTRICAL UNITS, FOLDING PARTITIONS AND OTHER CONCENTRATED LOADS PRIOR TO TRUSS FABRICATION. TRUSS MANUFACTURER SHALL DESIGN ALL DRAG TRUSSES AND DRAG STRUTS FOR THE FOLLOWING:

- A. SHEAR LOADS AS INDICATED ON THE PLANS AND NOTES B. DRAG TRUSSES TO COLLECT LOAD ALONG THE TOP CHORD AND TRANSFER TO THE
- BOTTOM CHORD THROUGH WEB MEMBERS C. ALL TOP AND BOTTOM CHORDS TO HAVE CAPACITY OF TRANSFERRING SHEAR LOADS THROUGH SPLICES.
- 6. THE TRUSS MANUFACTURER SHALL SUBMIT DESIGNS, SHOP DRAWINGS AND CALCULATIONS BEARING THE STAMP OF A REGISTERED PROFESSIONAL ENGINEER
- LICENSED IN THE STATE WHERE THE PROJECT IS LOCATED FOR REVIEW AND APPROVAL. 7. DEFLECTION OF MEMBERS DUE TO DESIGN LOADS SHALL NOT EXCEED LIVE LOAD - 1/240
- OF SPAN AND TOTAL LOAD 1/240 OF SPAN 8. DESIGN, SHOP DRAWINGS AND CALCULATIONS SHALL INCLUDE THE FOLLOWING
- INFORMATION:
- A. DEFLECTION DESIGN CRITERIA
- B. LIVE, SNOW, DEAD, WIND, SEISMIC AND MECHANICAL DESIGN LOADS
- C. ERECTION AND PLACEMENT CRITERIA
- D. DETAILS OF ALL BRIDGING, BRACING, STIFFENERS, BLOCKING AND CONNECTIONS E. LOCATION AND FRAMING FOR ALL EQUIPMENT LOADS OVER 500 LBS
- F. LOCATION AND FRAMING FOR ALL SUSPENDED WALLS AND EQUIPMENT
- G. LOCATION AND FRAMING FOR ALL ROOF TIEOFFS (COORDINATE WITH TIEOFF
- ENGINEER AND MANUFACTURER) 9. DO NOT NOTCH OR DRILL TRUSS MEMBERS WITH OUT APPROVAL OF THE TRUSS MANUFACTURER AND THEIR ENGINEER.
- 10. TRUSS SUPPLIER SHALL PROVIDE BRIDGING, HANGERS, BLOCKING, CUSTOM FABRICATED HANGERS AND OTHER ACCESSORIES NECESSARY FOR THE PROPER ERECTION AND PERFORMANCE OF THEIR PRODUCT. THESE SHALL BE CLEARLY CALLED OUT AND DETAILED ON THE SHOP DRAWINGS.

NAILING AND FASTENERS:

- 1. ALL FRAMING NAILS SHALL BE OF THE SIZE AND NUMBER INDICATED ON THE DRAWINGS AND CONFORM TO THE "STANDARD SPECIFICATION OF DRIVEN FASTENERS: NAILS. SPIKES, AND STAPLES" (ASTM F1667) AND "POWER-DRIVEN STAPLES AND NAILS FOR USE IN ALL TYPES OF BUILDING CONSTRUCTION" (NER 272).
- 2. NAILING NOT SHOWN SHALL BE AS INDICATED ON IBC/OSSC TABLE 2304.9.1, OR NER-272. 3. NAILS SHALL BE IDENTIFIED BY LABELS ATTACHED TO THEIR CONTAINERS, THAT SHOW
- THE MANUFACTURER'S NAME, NAIL SHANK DIAMETER, AND LENGTH. 4. NAIL SIZES SHALL BE AS FOLLOWS:

FRAMING NAILS			
NAIL TYPE	SHANK DIAMETER (IN)	MINIMUM PENETRATION INTO FRAMING MEMBER (IN)	
6d	0.113	1.250	
8d	0.131	1.375	
10d	0.148	1.500	
16d	0.162	1.625	

5. UNLESS OTHERWISE NOTED ON PLANS, PLYWOOD SHEATHING SHALL BE ATTACHED TO THE FRAMING SUPPORTS AS FOLLOWS:

SHEATHING NAILING			
USE PANEL EDGES INTERMEDIATE FRAMIN MEMBERS		INTERMEDIATE FRAMING MEMBERS	
ROOF SHEATHING	0.131" DIA AT 6" OC	0.131" DIA AT 12" OC	
FLOOR SHEATHING	0.148" DIA AT 6" OC	0.148" DIA AT 12" OC	
WALL SHEATHING	0.131" DIA AT 6" OC	0.131" DIA AT 12" OC	

NOTES: A. ALL NAILS SHALL BE COMMON NAILS EXCEPT RING SHANKS SHALL BE USED FOR FASTENING ROOF SHEATHING.

- 6. BOLTS AND LAG SCREWS SHALL CONFORM TO ANSI/ASME STANDARD B18.2.1-1981. ALL BOLTS AND LAG SCREWS SHALL BE INSTALLED WITH STANDARD CUT WASHERS. ALL A307 BOLTS SHALL HAVE CUT THREADS.
- 7. PRE-DRILL HOLES FOR LAG BOLTS. SOAP THREADS OF LAGS IMMEDIATELY PRIOR TO INSTALLATION.
- 8. JOIST HANGERS, HOLDOWNS, AND OTHER FRAMING ACCESSORIES SHALL BE MANUFACTURED BY SIMPSON STRONG TIE (OR AN APPROVED EQUAL) AND BE OF THE SIZE AND TYPE SHOWN ON THE DRAWINGS. HARDWARE FASTENERS SHALL BE INSTALLED IN STRICT CONFORMANCE TO THE MANUFACTURER'S REQUIREMENTS. ANY PRODUCT SUBSTITUTIONS TO SIMPSON SHALL MEET OR EXCEED SIMPSON'S PUBLISHED DESIGN CAPACITIES AND MUST HAVE A CURRENT ICC EVALUATION REPORT FOR THE APPLICABLE CODES.
- 9. HANGERS NOT SHOWN SHALL BE SIMPSON U-TYPE, OR B-TYPE OF THE SIZE
- RECOMMENDED FOR THE SPECIFIC FRAMING MEMBER SHOWN ON PLAN. 10. FASTENERS (NAILS, BOLTS, SCREWS, LAG SCREWS, ETC) IN CONTACT WITH PT LUMBER AND SHEATHING SHALL BE HOT DIPPED ZINC-COATED GALVANIZED STEEL. OTHER FASTENERS AND HARDWARE IN CONTACT WITH PT LUMBER AND SHEATHING SHALL BE OF MECHANICALLY DEPOSITED ZINC-COATED STEEL WITH COATING WEIGHTS IN ACCORDANCE WITH ASTM B695, CLASS 55 MINIMUM. CONNECTORS IN CONTACT WITH EXTERIOR APPLICATIONS OF PT LUMBER AND SHEATHING SHALL HAVE BE ZINC-COATED GALVANIZED STEEL IN ACCORDANCE WITH ASTMA653, TYPE G185. ADDITIONALLY, FASTENER TYPE AND COATINGS SHALL COMPLY WITH THE WRITTEN REQUIREMENTS OF THE MANUFACTURER. NO SUBSTITUTIONS PERMITTED.
- 11. FASTENERS (NAILS, BOLTS, SCREWS, LAG SCREWS, ETC) IN CONTACT WITH FRT LUMBER AND SHEATHING SHALL BE HOT DIPPED ZINC-COATED GALVANIZED STEEL. OTHER FASTENERS AND HARDWARE IN CONTACT WITH FRT LUMBER AND SHEATHING SHALL BE OF MECHANICALLY DEPOSITED ZINC-COATED STEEL WITH COATING WEIGHTS IN ACCORDANCE WITH ASTM B695, CLASS 55 MINIMUM. ADDITIONALLY, FASTENER TYPE AND COATINGS SHALL COMPLY WITH THE WRITTEN REQUIREMENTS OF THE MANUFACTURER.
- 12. SILLS AT WALLS SHALL BE BOLTED TO CONCRETE WITH 5/8" DIAMETER x 7" EMBED ANCHOR BOLTS AT 4'-0" OC MAXIMUM AND WITHIN 1'-0" OF SILL PLATE ENDS, CORNERS OR SPLICES, UNLESS DETAILED OTHERWISE. WASHERS TO BE MINIMUM 1/4"x3"x3", IN ACCORDANCE WITH IBC 2305.3.11.
- 13. ALL SILL PLATES AND LEDGERS SHALL BE ANCHORED WITH A MINIMUM OF THREE FASTENERS PER PIECE.
- 14. ANCHOR BOLTS, INCLUDING NUTS AND WASHERS, FROM SILL PLATES TO CONCRETE FOUNDATION OR SLAB SHALL BE HOT DIPPED GALVANIZED IN ACCORDANCE WITH ASTM A653 TYPE G185 OR APPROVED EQUAL.

ANCHOR BOLTS:

- FOUNDATION OR SLAB SHALL BE HOT DIPPED GALVANIZED IN ACCORDANCE WITH ASTM A653 TYPE G185 OR APPROVED EQUAL.
- WASHERS.
- 3. ANCHOR BOLTS SHALL BE PLACED SO THAT PLATE WASHER EDGE IS PARALLEL TO AND REQUIREMENTS OF BOLT AND WASHERS.
- DISPLACEMENT DURING CONCRETE PLACEMENT. DO NOT HAND SET OR WET SET.
- THE PLACE OF ANCHOR BOLT AT THE END OF THE SHEAR WALL.
- 6. ALL SILL PLATES SHALL BE ANCHORED WITH A MINIMUM OF THREE FASTENERS PER PIECE. WALL.
- 7. ANCHOR BOLTS SHALL BE ASTM F1554 GRADE 36 STEEL.

HOLDOWN BOLTS:

- 1. HOLDOWN BOLTS, INCLUDING NUTS AND WASHERS, EMBEDDED INTO FOUNDATION OR APPROVED EQUAL.
- 2. HOLDOWN BOLTS SHALL BE INSTALLED IN ACCORDANCE WITH MANUFACTURER'S SPECIFICATIONS.
- 3. HOLDOWN BOLTS SHALL BE PLACED A MINIMUM OF 5" FROM THE END OF CONCRETE
- STEMWALLS. ADD ADDITIONAL 2x STUD AS REQUIRED. 4. REFERENCE PLANS, HOLDOWN SCHEDULE AND DETAILS FOR TYPICAL HOLDOWN
- INSTALLATION REQUIREMENTS.
- 6. HOLDOWN BOLTS SHALL BE ASTM F1554 GRADE 36 STEEL, THREADED ON BOTH ENDS UNLESS NOTED OTHERWISE.
- DAYS PRIOR TO ENCLOSING THE WALLS.

1. ANCHOR BOLTS, INCLUDING NUTS AND WASHERS, FROM SILL PLATES TO CONCRETE

2. ANCHOR BOLTS SHALL HAVE A GALVANIZED STEEL PLATE WASHER BETWEEN THE SILL PL AND NUT. REF SHEAR WALL DETAILS FOR PLACEMENT REQUIREMENTS OF BOLT AND

LOCATED WITHIN 1/2" OF WALL SHEATHING. REF SHEAR WALL DETAILS FOR PLACEMENT

4. ANCHOR BOLTS SHALL BE LOCATED IN THE FORMS AND TIED SUFFICIENTLY TO PREVENT

5. SILLS AT WALL SHALL BE BOLTED TO CONCRETE WITH 5/8" DIAMETER x 7" EMBED ANCHOR BOLTS AT 4'-0" OC MAXIMUM AND WITHIN 1'-0" OF SILL PLATE ENDS, CORNERS OR SPLICES, UNLESS NOTED OTHERWISE ON SHEAR WALL SCHEDULE. HOLDOWN BOLTS DO NOT TAKE

HOLDOWN BOLTS DO NOT TAKE THE PLACE OF ANCHOR BOLT AT THE END OF THE SHEAR

SLAB SHALL BE HOT DIPPED GALVANIZED IN ACCORDANCE WITH ASTM A653 TYPE G185 OR

5. HOLDOWN BOLTS SHALL BE LOCATED IN THE FORMS AND TIED SUFFICIENTLY TO PREVENT DISPLACEMENT DURING CONCRETE PLACEMENT. DO NOT HAND SET OR WET SET.

7. THE CONTRACTOR SHALL TIGHTEN ALL HOLDOWN BOLTS TO FOUNDATION WITHIN FIVE

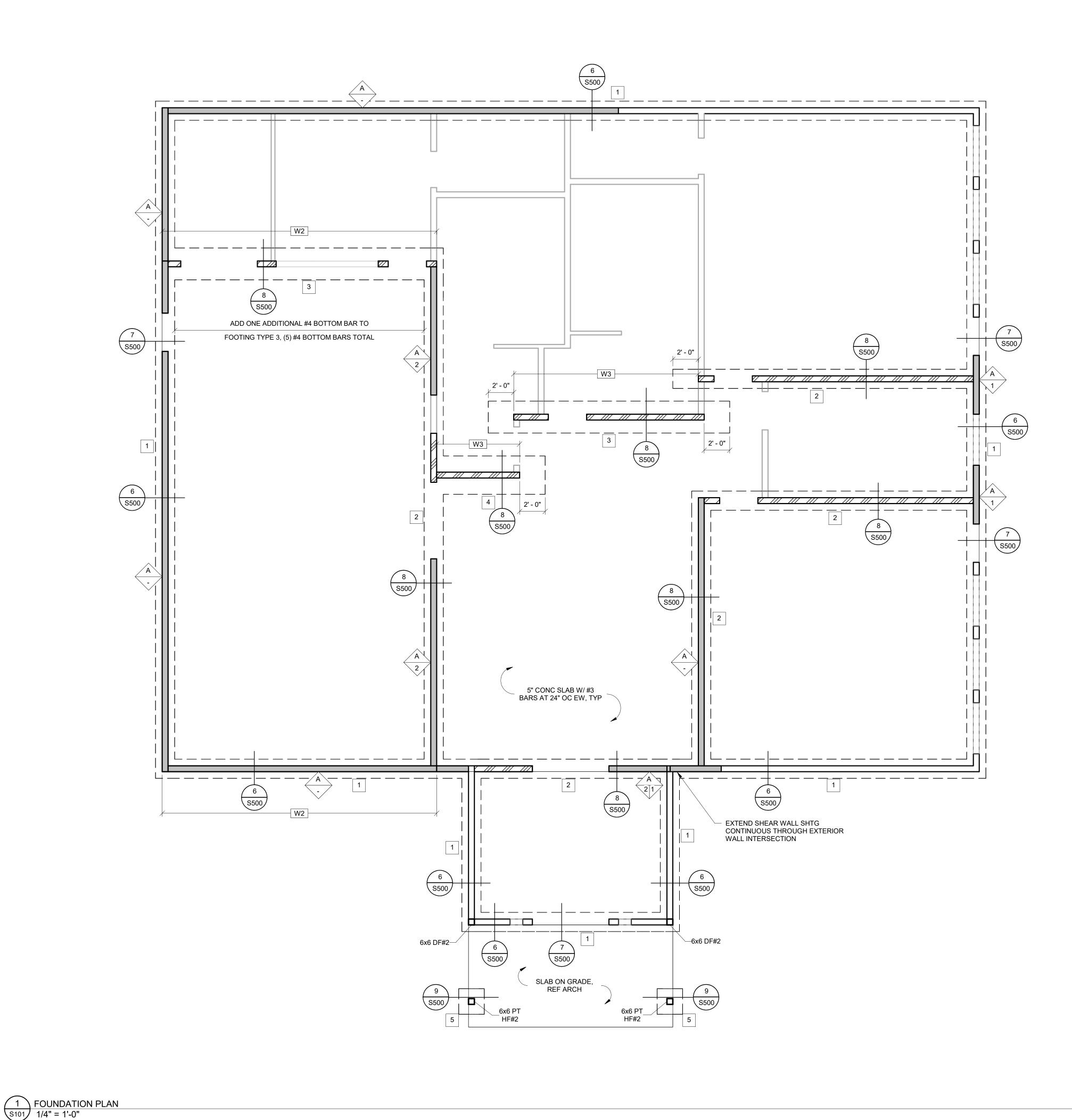
SHEET NUMBER:

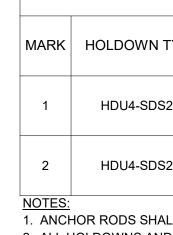
GENERAL STRUCTURAL NOTES

SHEET TITLE:

PROJECT MANAG	BER: BL
DESIGNER:	BL
DRAWN BY:	KR
PROJECT NO:	24-B101
DATE:	04-30-2024
SCALE:	AS SHOWN

PERMIT SET


NO DATE DESCRIPTION



3020 HIGHWAY 200 TROUT CREEK, MT 59874

TYPE	APA RATED SHEATHING		
A	15/32" SHTH (1) SIDE	(
SHEAR W	ALL GENERAL NOTES (A	PF	
1. IF ANC	HOR BOLT SPACING IS G	RE	
2. SHEAR	WALLS ARE TO BE BLOC	к	
3. GALVA	NIZED NAILS SHALL BE U	SI	
 ANCHOR BOLTS SHALL BE GALVA WITHIN 1/2" OF WALL SHEATHING) B REQUIREMENTS OF AB AND PL WAS PENETRATIONS – NO BLOCKING I CIRCULAR OR SQUARE CUT WITH R ACCUMULATED LENGTH OF THE OP BEYOND THESE PARAMETERS REQUING 6. PENETRATIONS – BLOCKING REC 			
OR SQUA LENGTH (PROVIDEI	RATIONS – BLOCKING RE RE CUT WITH RADIUS CO OF THE OPENINGS IN THE O ABOVE AND BELOW TH G. OPENINGS BEYOND TH	R E E	
8. REFER	ENCE THE HOLDOWN SC	H	

SHEAR WALL SCHEDULE			
PANEL NAILING	FRAMING THICKNESS AT ADJOINING PANEL EDGES	MUD SILL AND ANCHOR BOLTS (REF NOTE 1, 5)	COMMENTS
31" DIA x 2 1/2" NAILS AT 6" C FOR PANEL EDGES, 12" OC FIELD	2x	2x SILL PL W/ 5/8" DIA AB AT 48" OC (EMBEDMENT = 7")	
ICABLE TO ALL SHEAR WAL			

REATER THAN SHEAR WALL LENGTH INSTALL (1) ANCHOR WITHIN 12" OF EACH END.

KED AT ALL PANEL EDGES UNLESS NOTED OR DETAILED OTHERWISE. SED FOR THE NAILS INTO PT OR FRT LUMBER.

ANIZED AND SHALL HAVE A GALVANIZED PLATE WASHER (PLATE WASHER EDGE PARALLEL TO AND LOCATED BETWEEN THE SILL PL AND NUT. REFERENCE SHEAR WALL DETAILS1/S800 AND 3/S800 FOR PLACEMENT SHER.

REQUIRED AT 4 1/2" X 4 1/2" MAXIMUM OPENINGS PROVIDED OPENINGS ARE SEPARATED BY 8" MINIMUM, HOLE IS RADIUS CORNERS, NO OVERCUTTING, HOLES ARE NOT WITHIN LAST 16" OF SHEARWALL LENGTH, AND PENINGS IN THE SHEARWALL DOES NOT EXCEED THE LESSER OF 20% OF THE WALL LENGTH AND 18". OPENINGS QUIRE APPROVAL BY THE ENGINEER OF RECORD PRIOR TO CUTTING AND DRILLING.

QUIRED AT 9" x 9" MAXIMUM OPENINGS PROVIDED OPENINGS ARE SEPARATED BY 16" MINIMUM, HOLE IS CIRCULAR RNERS, NO OVERCUTTING, HOLES ARE NOT WITHIN LAST 16" OF SHEARWALL LENGTH, AND ACCUMULATED SHEARWALL DOES NOT EXCEED THE LESSER OF 20% OF THE WALL LENGTH AND 18". 2x BLOCKING SHALL BE E OPENING, FOR THE WIDTH OF THE STUD BAY. SHEAR WALL SHEATHING SHALL BE EDGE NAILED TO THIS ESE PARAMETERS REQUIRE APPROVAL BY THE ENGINEER OF RECORD PRIOR TO CUTTING AND DRILLING. HEDULE FOR END POST REQUIREMENTS AT EACH END OF SHEAR WALLS AND ANCHOR TYPE.

HOLDOWN SCHEDULE

TYPE	HOLDOWN POST	HOLDOWN ATTACHMENT TO POST	ANCHOR ROD	ANCHOR ROD EMBEDMENT DEPTH, Le
S2.5	(2) 2x STUDS	(10) SDS 1/4" x 2-1/2"	USE SIMPSON SSTB16L INTO STEM WALL	PER MANU. REQ. REF. DETAIL 4/S800
S2.5	(2) 2x STUDS	(10) SDS 1/4" x 2-1/2"	USE A 5/8" DIA THREADED ROD EMBEDDED INTO FTG WITH A 1/2"x1 3/4"x1 3/4" PLATE WASHER (PAB5)	0'-7" DEEP REF. DETAIL 5/S800

1. ANCHOR RODS SHALL BE ASTM F1554 GRADE 36 OR AS SPECIFIED BY MANUFACTURE.

2. ALL HOLDOWNS AND HOLDOWN ANCHORS SHALL BE INSTALLED IN STRICT CONFORMANCE TO MANUFACTURER'S REQUIREMENTS. 3. BUILT UP HOLDOWN POSTS SHALL BE LAMINATED IN ACCORDANCE WITH THE STANDARD BUILT-UP WOOD POST DETAIL 4/S600. 4. NUTS FOR ANCHOR RODS SHALL BE STANDARD HEX NUTS TYPE ASTM A563-A.

5. HOLDOWNS SHALL OCCUR AT EACH END OF SHEAR WALLS. TYPICAL UNLESS NOTED OTHERWISE.

FOOTING SCHEDULE

TYPE	SIZE	REINFORCING	NOTES
1	1'-6" WIDE x 10" DEEP	LONG: (2) #4 EQ SPACED - BOT	
	x CONT	TRANSV: #4 AT 24" OC BOT	
2	1'-6" WIDE x 10" DEEP	LONG: (2) #4 EQ SPACED - BOT	THICKENED SLAB
2	x CONT	TRANSV: #4 AT 24" OC BOT	FOOTING
3	2'-6" WIDE x 10" DEEP	LONG: (4) #4 EQ SPACED - T&B	THICKENED SLAB
3 x CONT		TRANSV: #4 AT 12" OC BOT	FOOTING
4	3'-0" WIDE x 10" DEEP	LONG: (4) #4 EQ SPACED - T&B	THICKENED SLAB
	x CONT	TRANSV: #4 AT 12" OC BOT	FOOTING
5	2'-0" x 2'-0" x 10"	(3) #4 EACH WAY - EQ. SPACED AT BOT	

1. FOOTINGS SHALL BE CENTERED UNDER COLUMNS AND WALLS UNLESS NOTED OTHERWISE.

BEARING WALL SCHEDULE

MARK	STUD SIZE AND GRADE	NOTES
W1	2x6 DF#2 AT 16" OC	TYPICAL CONDITION
W2	2x6 DF#2 AT 12" OC	ALIGN EVERY-OTHER STUD WITH TRUSS
W3	(2) 2x6 DF#2 AT 24" OC	ALIGN DOUBLE STUD WITH EACH TRUSS

NOTES:

NOTES:

1. FRAME ALL WALLS TO THE TRUSS BOTTOM CHORD UNLESS DETAILED OTHERWISE.

2. REFERENCE DETAIL 4/S600 FOR BUILT-UP STUD LAMINATION.

FOUNDATION PLAN NOTES

- A FOR A COMPLETE LEGEND OF ALL CALLOUTS AND SYMBOLS SEE COVER SHEET AND SCHEDULES.
- B ALL SLAB ON GRADE FINISHES SHALL BE PER ARCHITECT.
- C REFERENCE ARCHITECT FOR ALL EDGE OF SLAB DIMENSIONS. D REFERENCE MECHANICAL / PLUMBING DRAWINGS FOR LOCATIONS OF FLOOR DRAINS AND OTHER PENETRATIONS.
- E WALLS SHALL REACH DESIGN STRENGTH PRIOR TO BACK FILLING WALLS. F MONITOR WALLS FOR SIGNS OF SWELLING OR DISTRESS DURING BACK FILLING AND
- COMPACTION. PROVIDE SHORING AS REQUIRED.
- G FOR TYPICAL BAR DOWELS AND HOOKS REF DETAIL 1/S500. H STEP FOOTING FROM ELEVATION TO ELEVATION AS REQUIRED, REF DETAIL 2/S500.
- I CONTRACTOR TO LAYOUT CONTROL JOINTS PER THE CRITERIA IN STRUCTURAL NOTES AND DETAIL 3/S500 AND SUBMIT TO THE DESIGN TEAM FOR REVIEW AND APPROVAL.
- J FOR STEM WALL AND FOOTING BLOCKOUTS AT PLUMBING AND CONDUIT REF DETAILS 4/S500 AND 5/S500.
- K REFERENCE WALL TYPE W1 FOR TYPICAL BEARING WALL CONSTRUCTION, UNLESS NOTED OTHERWISE ON PLAN. L FOR ALL HEADERS, REF DETAIL 1/S600 FOR SILL, TRIMMERS AND KINGS ASSIGNED TO
- EACH HEADER TYPE. HEADERS SHALL BE SINGLE SPAN. M FOR ALLOWABLE HOLES AND NOCHES IN WOOD FRAMING (EXCLUDING COLUMNS AND
- TRUSSES) REF DETAIL 2/S600.
- N FOR TYPICAL WALL CORNER AND INTERSECTIONS REF DETAIL 3/S600.
- O FOR BUILT-UP WOOD POSTS, KINGS, TRIMMERS AND SUTDS REF DETAIL 4/S600 FOR FASTENERS.
- P REFERENCE DETAIL 5/S600 FOR TYPICAL DOUBLE TOP PL SPLICE CONNECTION. IF BOTH PLYS BREAK PROVIDE SIMPSN MSTA24 STRAP CENTERED ON BREAK. Q AT ALL NON-BEARING PARTITION WALLS REF DETAIL 7/S600 OR DECLECTION GAP AND
- FASTENING. R FOR TYPICAL SHEAR WALL CONSTRUCTION REF DETAIL 1/S800.

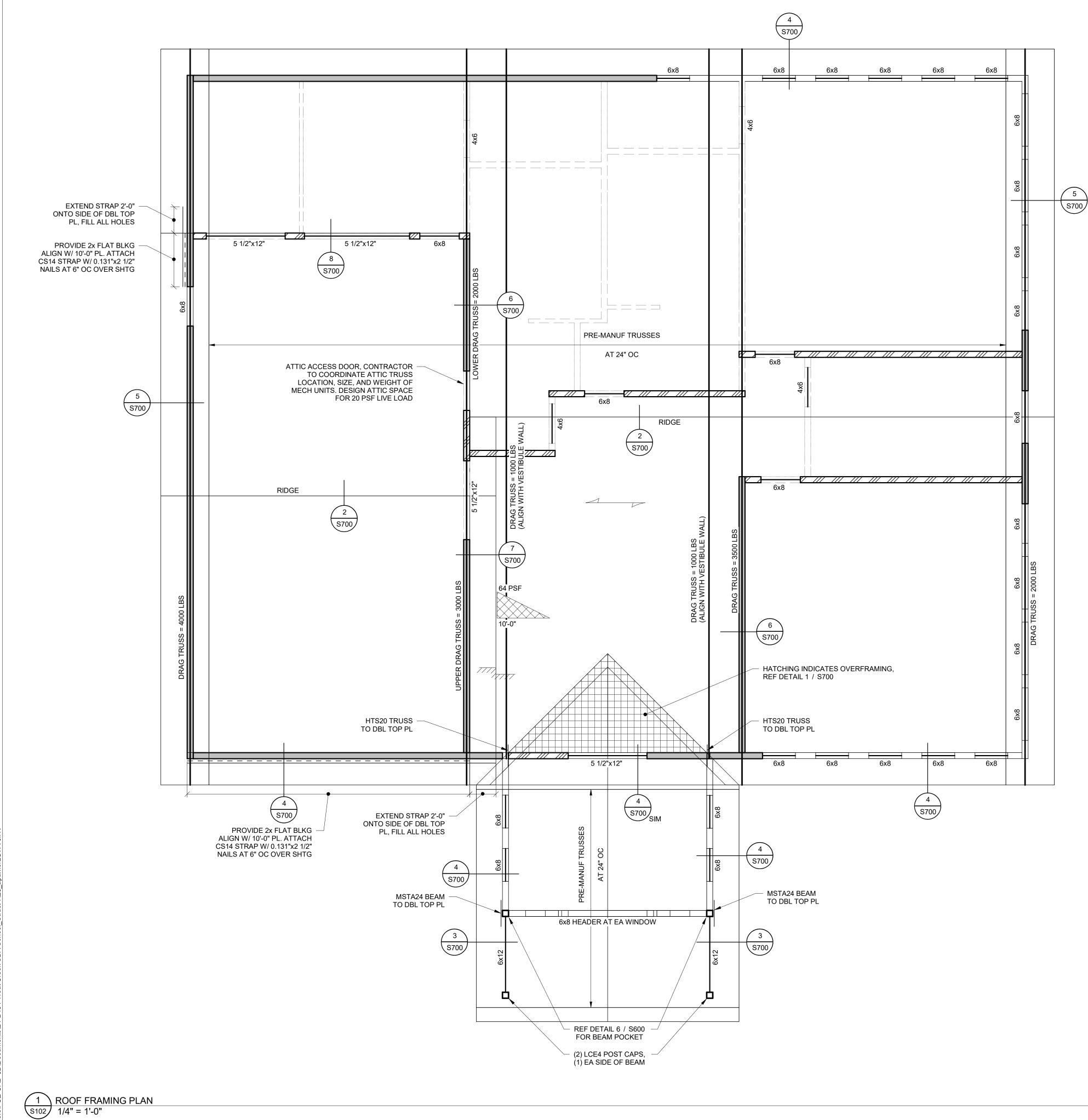
TROUT CREEK SDA SCHOOL

3020 HIGHWAY 200 TROUT CREEK, MT 59874

$(\mathbf{0})$

PERMIT SET

NO DATE DESCRIPTION


PROJECT MANAG	ER: BL
DESIGNER:	BL
DRAWN BY:	KR
PROJECT NO:	24-B101
DATE:	04-30-2024
SCALE:	AS SHOWN

SHEET TITLE:

FOUNDATION PLAN

SHEET NUMBER:

S10

5/1/2024 2:31:51 PM

s/FCE-CAD-8B\Documents\24-B101 Trout Creek SDA School_Struct-R23_aparkerLUWV6.n

ROOF FRAMING PLAN NOTES

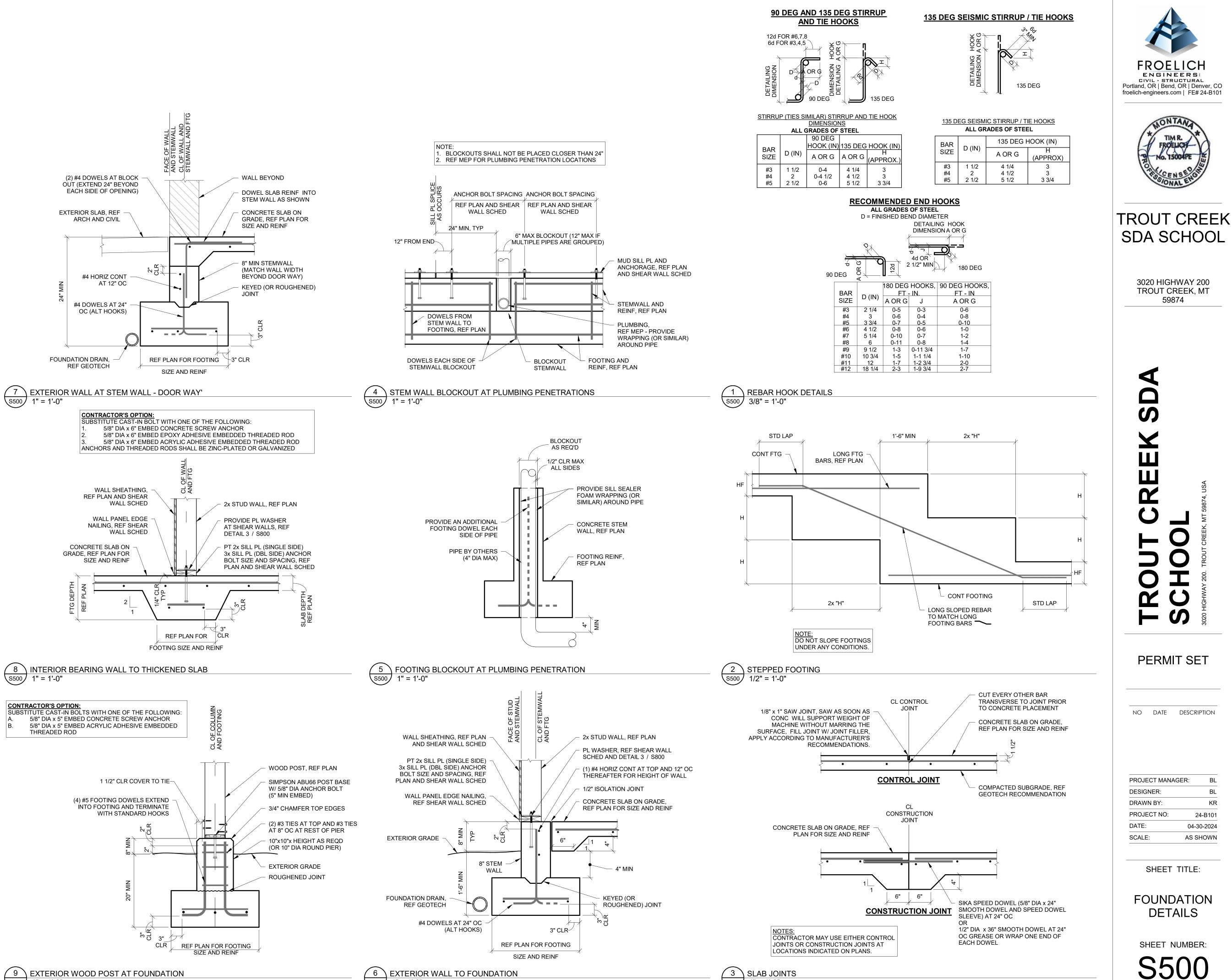
- A FOR A COMPLETE LEGEND OF ALL CALLOUTS AND SYMBOLS SEE COVER SHEET AND SCHEDULES.
- B VERIFY SIZE AND LOCATION OF ALL MECHANICAL AND WALL PENETRATIONS.
- C TRUSS MANUFACTURER TO REVIEW ALL DETAILS AND PLANS TO ACCOUNT FOR SPECIFIC CONDITIONS.
 D REFERENCE WALL TYPE W1 FOR TYPICAL BEARING WALL CONSTRUCTION, UNLESS
- NOTED OTHERWISE ON PLAN. E FOR ALL HEADERS, REF DETAIL 1/S600 FOR SILL, TRIMMERS AND KINGS ASSIGNED TO EACH HEADER TYPE. HEADERS SHALL BE SINGLE SPAN.
- F FOR ALLOWABLE HOLES AND NOCHES IN WOOD FRAMING (EXCLUDING COLUMNS AND TRUSSES) REF DETAIL 2/S600.
- G FOR TYPICAL WALL CORNER AND INTERSECTIONS REF DETAIL 3/S600.
 H FOR BUILT-UP WOOD POSTS, KINGS, TRIMMERS AND SUTDS REF DETAIL 4/S600 FOR FASTENERS.
- REFERENCE DETAIL 5/S600 FOR TYPICAL DOUBLE TOP PL SPLICE CONNECTION. IF
 BOTH PLYS BREAK PROVIDE SIMPSN MSTA24 STRAP CENTERED ON BREAK.
- J AT ALL NON-BEARING PARTITION WALLS REF DETAIL 7/S600 OR DECLECTION GAP AND FASTENING.
- K FOR TYPICAL ROOF DIAPHRAGM CONSTRUCTION REF DETAIL 9/S700.L FOR TYPICAL SHEAR WALL CONSTRUCTION REF DETAIL 1/S800.

3020 HIGHWAY 200 TROUT CREEK, MT 59874

TROUT CREEK SD/ SCHOOL

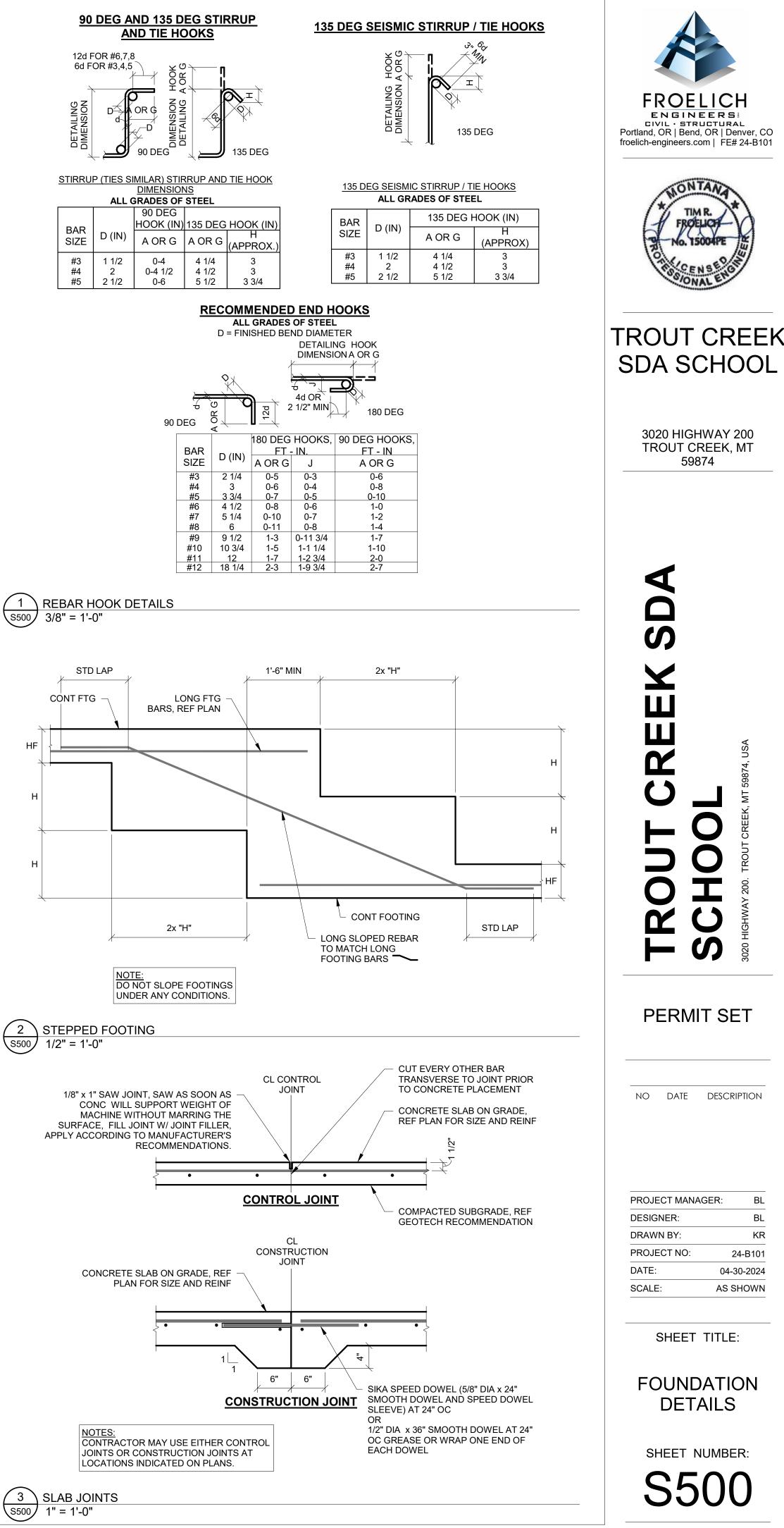
PERMIT SET

NO	DATE	DESCRIPTION

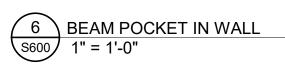

PROJECT MANAG	ER: BL
DESIGNER:	BL
DRAWN BY:	KR
PROJECT NO:	24-B101
DATE:	04-30-2024
SCALE:	AS SHOWN

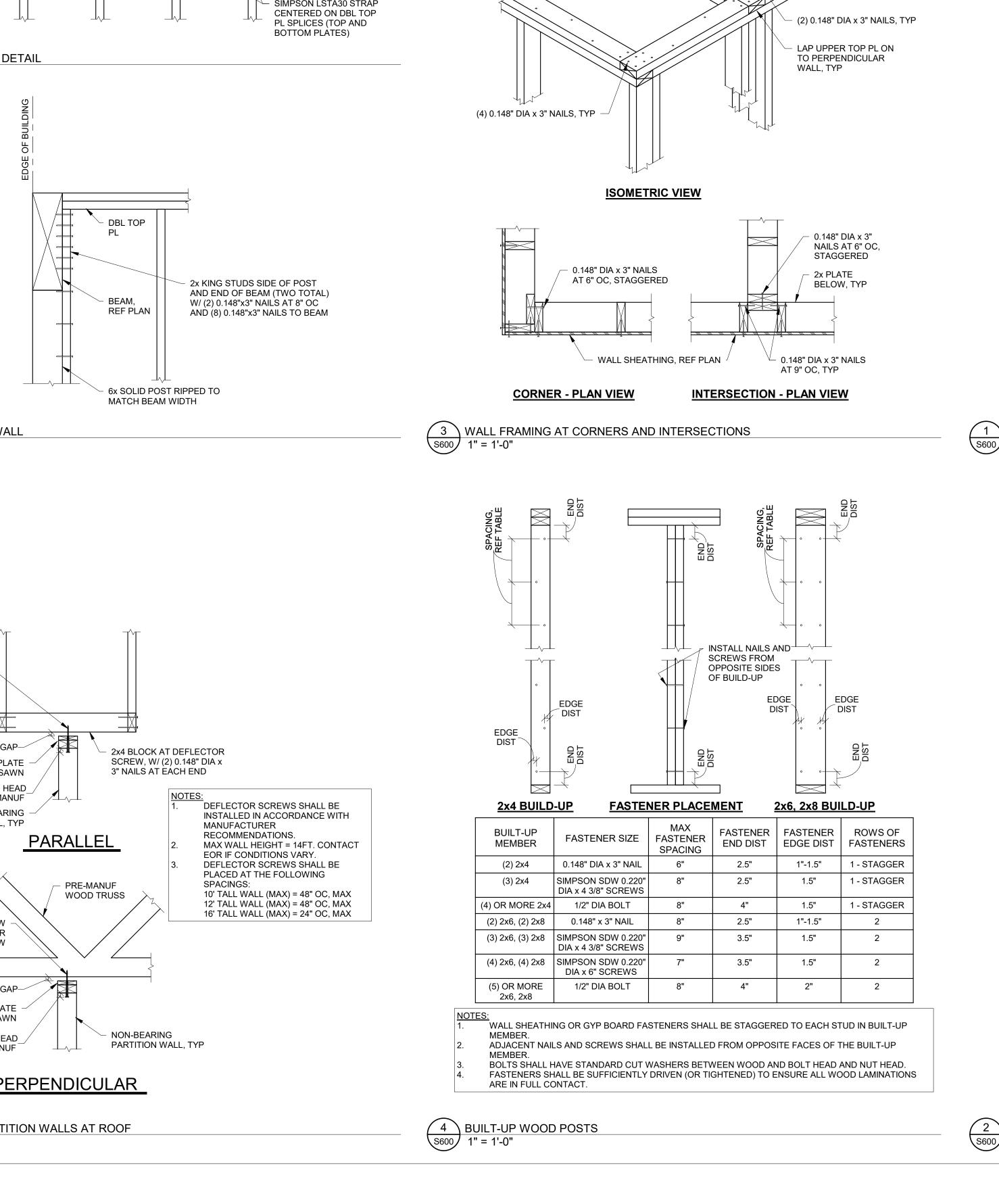
SHEET TITLE:

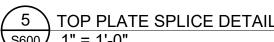
ROOF FRAMING PLAN

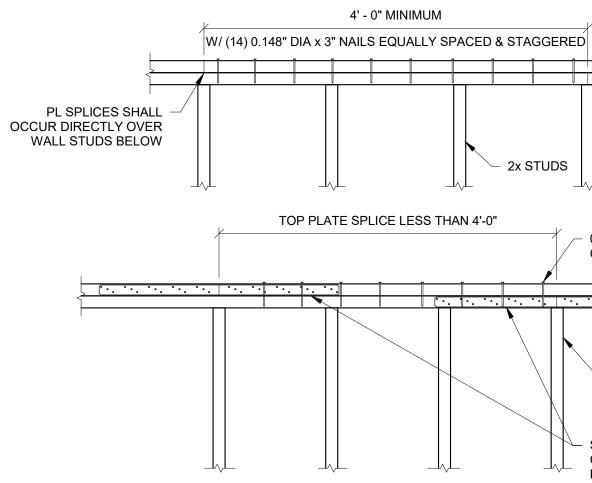

SHEET NUMBER:

S102




9 EXTERIOR WOOD POST AT FOUNDATION \$500 1" = 1'-0"


s500 1" = 1'-0"



SIMPSON LSTA30 STRAP

- 2x STUDS

TOP PL, REF PLAN FOR SPLICE CONN

CONTINUOUS DBL

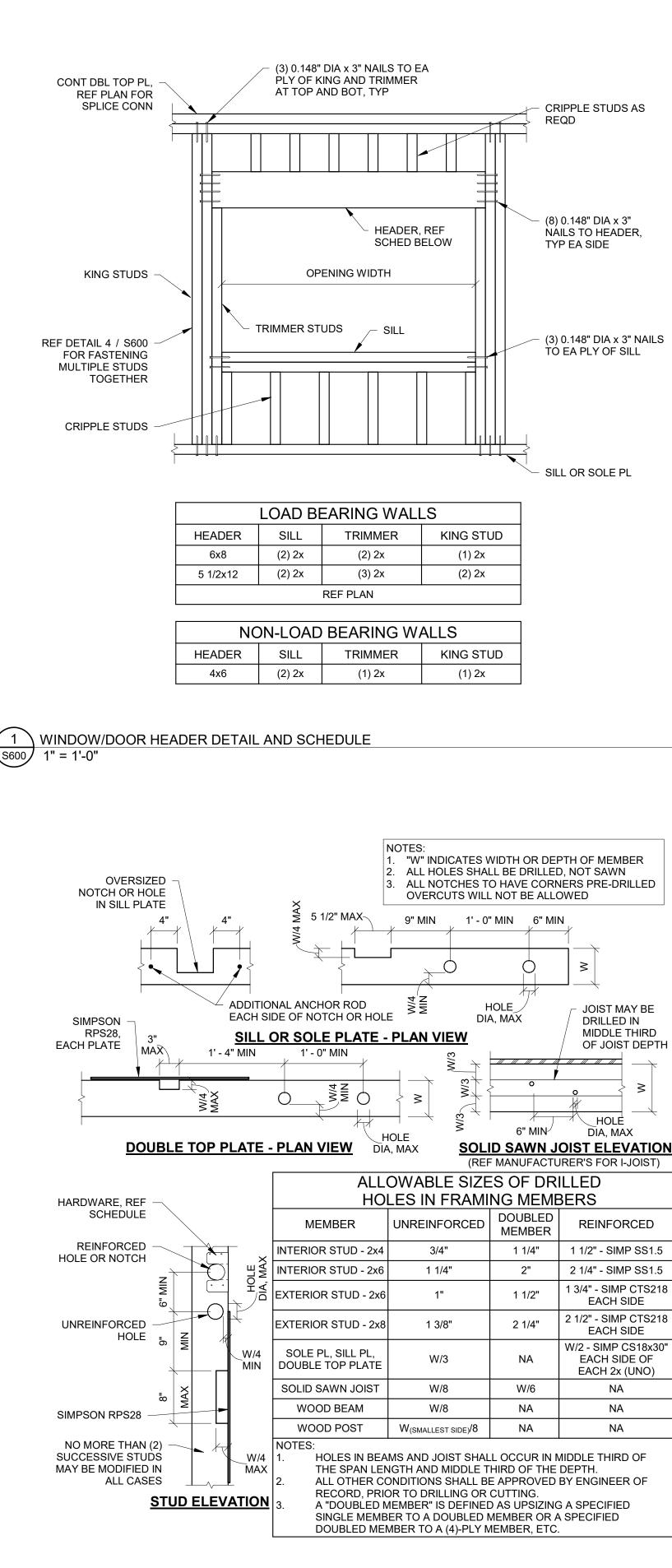
OC STAGGERED, (TYP)

0.148" DIA x 3" NAILS AT 8"

CONT DBL TOP PL,

s600 1" = 1'-0"

SIMPSON RPS28, EACH PLATE


HARDWARE, REF

REINFORCED -HOLE OR NOTCH

UNREINFORCED

SIMPSON RPS28

NO MORE THAN (2) SUCCESSIVE STUDS MAY BE MODIFIED IN

FROELICH

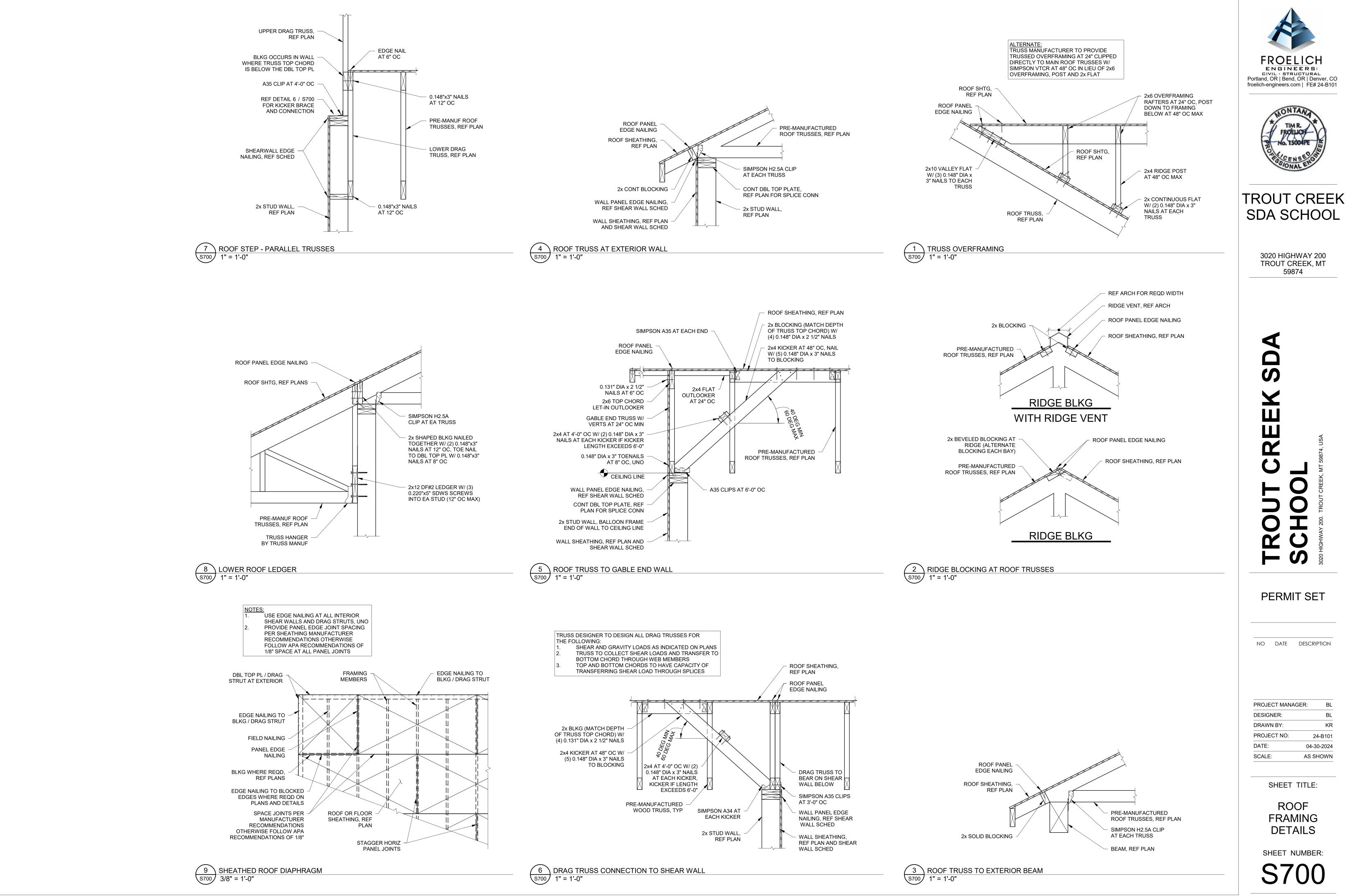
ENGINEERS

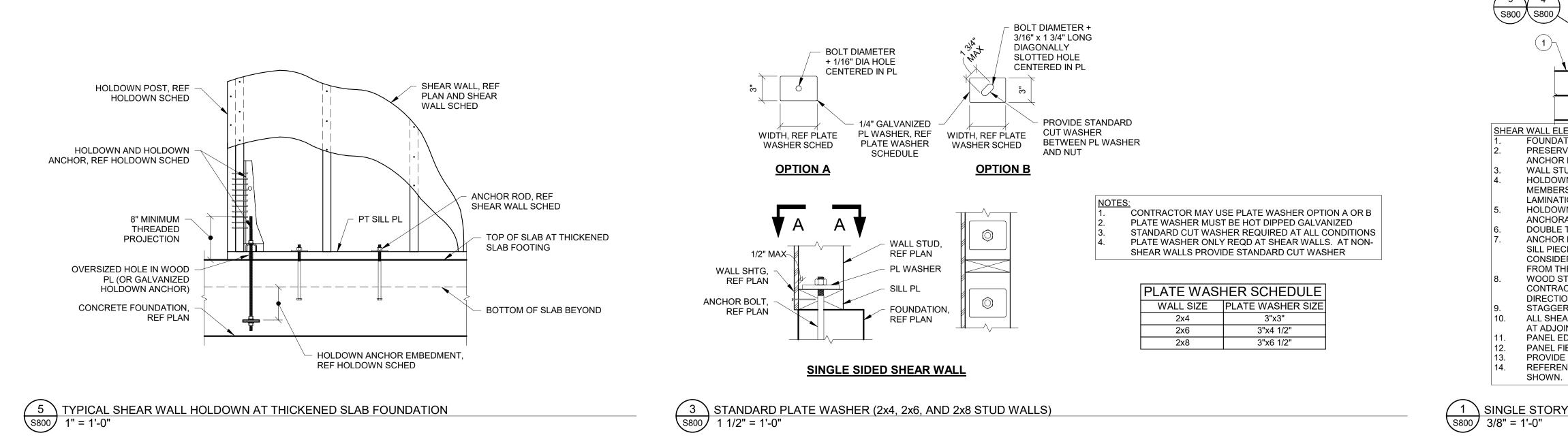
CIVIL · STRUCTURAL Portland, OR | Bend, OR | Denver, CO froelich-engineers.com | FE# 24-B101

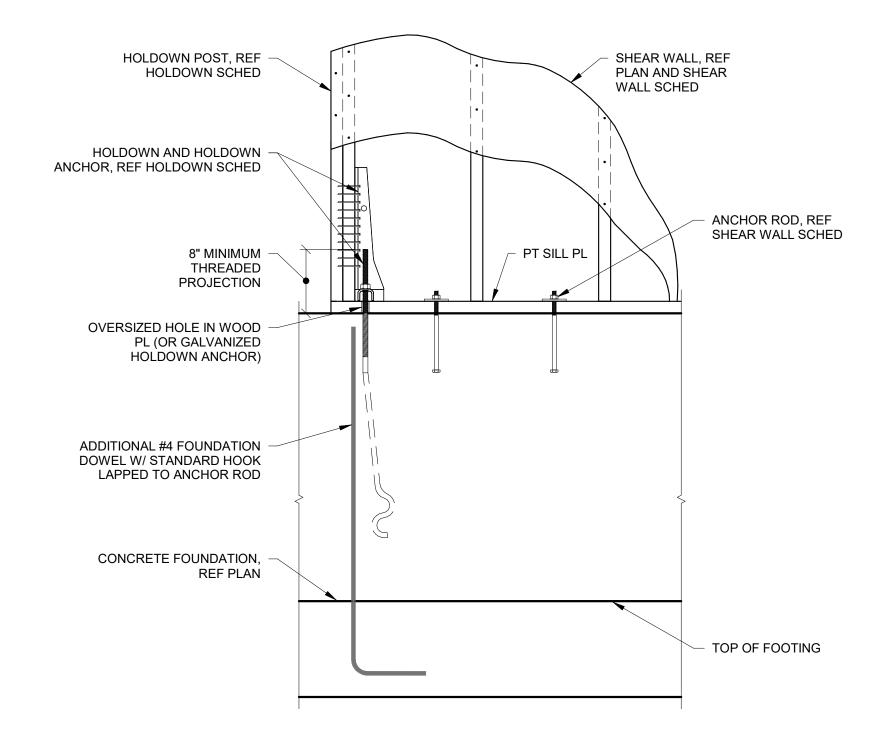
> Y Ш

PERMIT SET

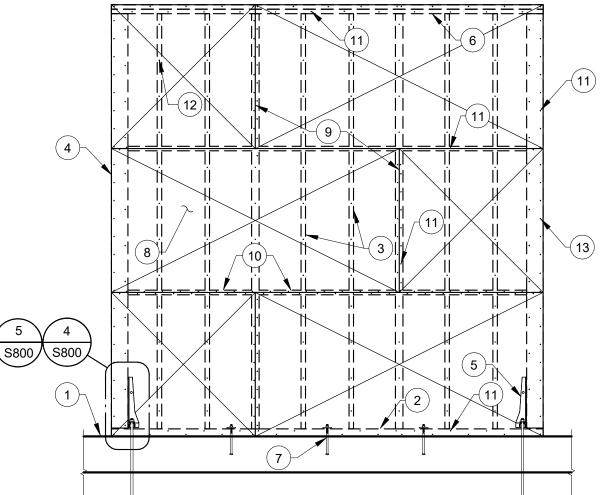
NO DATE DESCRIPTION


PROJECT MANAGE	R: E	BL
DESIGNER:	E	ΒL
DRAWN BY:	ł	٢R
PROJECT NO:	24-B1	01
DATE:	04-30-20	24
SCALE:	AS SHOW	٧N


SHEET TITLE:


SHEET NUMBER:

S600



4 TYPICAL SHEAR WALL HOLDOWN AT FOUNDATION 8800 1" = 1'-0"

SHEAR WALL ELEVATION NOTES FOUNDATION, REF PLAN.

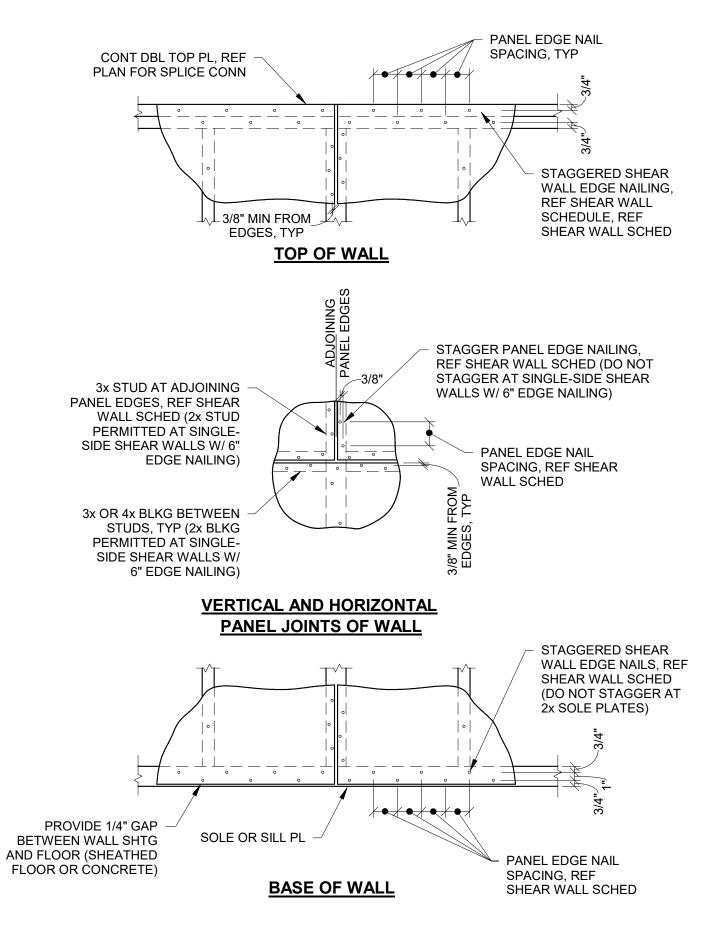
PRESERVATIVE TREATED SILL PLATE, REF SHEAR WALL SCHEDULE AND DETAIL 3 / S800 FOR SILL ANCHOR PLACEMENT. WALL STUDS, REF PLAN.

HOLDOWN POST, REF HOLDOWN SCHEDULE. WHERE HOLDOWN POST CONSISTS OF BUILT UP MEMBERS, PROVIDE STAGGERED NAILING TO EACH PLY OF POST. REF 4 / S600 FOR BUILT-UP POST

LAMINATION. HOLDOWN ANCHOR. REFERENCE PLANS AND HOLDOWN SCHEDULE FOR HOLDOWN ATTACHMENT AND ANCHORAGE TO FOUNDATION.

DOUBLE TOP PLATE, REF PLAN FOR SPLICE DETAIL. ANCHOR BOLTS W/ STEEL PLATE WASHERS. THERE SHALL BE A MINIMUM OF TWO ANCHORS FOR EACH SILL PIECE (ANY MODIFICATION TO SILL REMOVING MORE THAN 25% CROSS SECTION SHALL BE CONSIDERED BREAKING PLATE) W/ ONE ANCHOR LOCATED NOT LESS THAN 4 1/2" NOR MORE THAN 12" FROM THE END OF EACH PIECE.

WOOD STRUCTURAL PANEL SHEATHING. ORIENTATION MAY BE EITHER HORIZONTAL OR VERTICAL AT CONTRACTOR'S OPTION. MINIMUM DIMENSION OF AN INDIVIDUAL PANEL SHALL BE 24" IN EITHER DIRECTION. REF SHEAR WALL SCHEDULE FOR ADDITIONAL REQUIREMENTS.


STAGGER ALL VERTICAL PANEL JOINTS WHERE POSSIBLE. ALL SHEATHING EDGES ARE TO BE BLOCKED. REF SHEAR WALL SCHEDULE FOR FRAMING THICKNESS AT ADJOINING PANEL EDGES.

PANEL EDGE NAILING, REFERENCE SHEAR WALL SCHEDULE AND 2 / S800. PANEL FIELD NAILING TO INTERMEDIATE SUPPORT MEMBERS AT 12" OC.

PROVIDE PANEL EDGE FASTENING TO EACH PLY OF HOLDOWN POST.

REFERENCE SHEAR WALL SCHEDULE FOR ADDITIONAL REQUIREMENTS AND FOR INFORMATION NOT SHOWN.

1 SINGLE STORY TYPICAL SHEAR WALL ELEVATION

TROUT CREEK SDA SCHOOL

3020 HIGHWAY 200 TROUT CREEK, MT 59874

PERMIT SET

NO	DATE	DESCRI	PTION
PROJE	CT MANA	GER:	BL
DESIG	NER:		BL
			KF
DRAW	NDT.		
	CT NO:	24	1-B10 ⁻
			1-B101 0-2024

SHEET TITLE:

SHEET NUMBER:

Structural Calculations for the Trout Creek SDA School 3020 HIGHWAY 200 Trout Creek, MT 59874 for Trout Creek SDA School

> April 30, 2024 FE Job Number – 24-B101

These Calculations Are Void If Seal And Signature Are Not Original

* * * LIMITATIONS * * * ENGINEERING DESIGN IS BASED UPON INFORMATION PROVIDED BY THE CLIENT, WHO IS SOLELY RESPONSIBLE FOR ACCURACY OF SAME. NO RESPONSIBILITY AND / OR LIABILITY IS ASSUMED BY, OR IS TO BE ASSIGNED TO THE ENGINEER FOR ITEMS BEYOND THAT SHOWN ON THESE SHEETS.

www.froelich-engineers.com

PORTLAND (HQ)	503.624.7005	BEND	541.383.1828	DENVER	720.799.1001	

SCOPE OF WORK

Client's Name:	Trout Creek SDA School
Project Name:	Trout Creek SDA School
Project Number:	24-B101
Current Date:	4-22-24
By:	BL

SCOPE OF WORK

Froelich Engineers, Inc. (FE) has provided full structural lateral and gravity design of the project per the 2021 International Building Code (IBC).

Froelich Engineers, Inc. has provided details only to the areas pertaining to our design. Froelich Engineers, Inc. did not design or review the details for the entire project.

PROJECT DESCRIPTION

New single-story wood framed school building with slab on grade. Pre-manufactured wood press plate trusses with stud framed bearing walls/ shear walls and conventional foundations.

www.froelich-engineers.com

Client:Trout Creek SDAProject:Trout Creek SDA SchoolProj.#:24-B101Date:4/22/2024By:BL

Project Description

New School Pre-Manufactured Wood Trusses 2x Stud Bearing Walls and Shear Walls Slab on Grade Conventional Foundations

Project Location

3020 Highway 200 Trout Creek, MT 59874 45° 32' 53" N (45.548°) 122° 32' 20" W (122.539°) Average Elevation = 200 ft (approximate)

General

Building Department:	State Of Montana
Building Code(s):	2021 International Building Code (IBC)
	ASCE7-16

Roof Live Load:

Ground Snow Load = Minimum Roof Snow Load = Snow Importance Factor (I _S) = Deflection Criteria =	70	psf (Montana Ground Snow Load Finder) psf (ASCE7-16 Table 1.5-2)

Floor Live Loads:

School Classrooms =	40	psf (IBC Table 1607.1)	
School First-Floor Corridors =	100	psf (IBC Table 1607.1)	

Wind Load:

Basic Wind Speed =	105	mph (OSSC Figure 1609)
Exposure =	В	
Wind Importance Factor $(I_W) =$	1.00	(ASCE7-16 Table 1.5-2)

Seismic Load:

Occupancy Category =	II	(IBC Table 1604.5)
Seismic Importance Factor $(I_E) =$	1.00	(ASCE7-16 Table 1.5-2)
Site Class =	D	D - Default
Mapped Spectral Acceleration Values (S _S) =	0.424	g
Mapped Spectral Acceleration Values $(S_1) =$	0.136	g
Design Spectral Response Parameter (S _{DS}) =	0.413	g
Design Spectral Response Parameter (S _{D1}) =	0.212	g
Seismic Design Category =	D	
Response Modification Coefficient (R) =	6.5	Light-framed walls sheathed with wood panels
		Shear Walls (Bearing Wall System)

Soils Data:

Allowable Bearing Pressure = 1500 psf
Exterior Footing Depth = 36 inches

Client: Trout Creek SDA **Project:** Trout Creek SDA School Proj. #: 24-B101 4/22/2024 Date: By: BL

FROELICH **Dead Load Calculations**

Roof Dead Load

Top Chord of Truss

Component Weights	Actual (psf)	Comments
Roofing (Asphalt Shingles)	3.0	
Framing	6.0	Roof Trusses
Roof sheathing	2.0	5/8" shth
Misc.	1.0	
Total =	12.0	psf

Bottom Chord of Truss

Component Weights	Actual (psf)	Comments
Mechanical	1.5	
Sprinklers	1.0	
Blown-in Fiberglass Insulation	1.5	R49 = 16.25" thick ~ 0.75 psf
Ceiling	2.8	(1) 5/8" gyp
Misc.	1.2	
Total =	8.0	psf
Total Roof Dead Load =	20.0	psf

Exterior Wall Dead Load

Component Weights	Actual (psf)	Comments
Siding	2.3	Wood
Sheathing	1.7	1/2" shth
Framing	3	2x6 Studs
		Assume Fiberglass Owens Corning R-21
Insulation	0.6	Roll is 40 lbs, coverage = 67.8 ft2
Interior Gyp Finish	2.8	5/8" gyp
Misc.	1.6	
Total =	12.0	psf

Interior Wall /Partition Wall Dead Load

Component Weights	Actual (psf)	Comments
Interior Gyp Finish	5.6	5/8" gyp each side
Framing	1.7	2x6 at 16" oc
		Assume Fiberglass Owens Corning R-21
Insulation	0.6	Roll is 40 lbs, coverage = 67.8 ft2
Misc.	0.1	
Tot	$a_1 = 8.0$	nsf

 $\overline{\text{Total}} = 2000$ msf

Client: Project: Proj. #: Date: By: Trout Creek SDA Trout Creek SDA School 24-B101 4/22/2024 BL

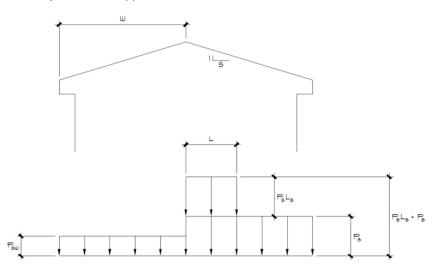
FROELICH Flat Roof Snow Load Calculation: Based on the following Codes: 2021 IBC ASCE 7-16

			2nd Printi	ng 3rd Printing
Ground Snow Load (pg) =	90	psf		
Terrian Category =	B (Partial	Exposed)	per ASCE 7-16 Section 26.7	page 266
Snow Exposure Factor (C _e) =	1.0		per ASCE 7-16 Table 7.3-1	page 58
Thermal Factor (C _t) =	1.1		per ASCE 7-16 Table 7.3-2	page 58
Importance Factor (I _s) =	1.00		per ASCE 7-16 Table 1.5-2	page 5
Flat Roof Snow Load (p _f) =	69.30	psf	$p_{f} = 0.7 C_{e} C_{t} l_{s} p_{g}$	page 51
Where p _g ≤ 20 psf (p _f Min) =	69.30	psf	$p_{fmin} = I^* p_g$	page 53
Where p _g > 20 psf (p _f Min) =	20	psf	p _{fmin} = I*20	page 53
Controlling Flat Roof Snow (p _f) =	69.3	psf		
Sloped Roof Snow Load Calculation:				
Roof Slope Rise (x/12) =	6			
Roof Slope Degrees =	27			
Minimum Sloped Roof Snow Load (p _m) =	N/A	psf p _m	= I _s *p _g Use Max p _g of 20psf	page 53
Thermal Factor (Ct) =	1.1	cold roof		
Roof Thermal Resistance (R) =				
Surface Type = /				
Sloped Roof Factor (C _s) =	1.0	see	ASCE 7-16 Figure 7.4-1	page 59
Sloped Roof Snow Load (p_s) =	69.30	psf p _s	= C _s *p _f	page 54
Rain on Snow Load Calculation:				

ASCE Page Refs by Printing

page 61

Roof Slope Degrees = 26.6 Roof Width, W = 28 ft Rain on snow Surcharge Required: Not Required Rain on snow Surcharge: 0 ASCE 7.10 page 62

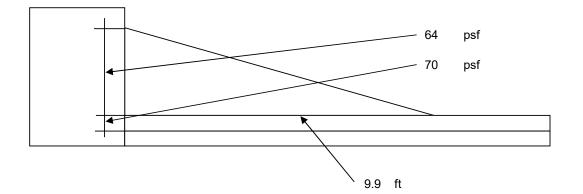

Controlling Roof Snow Load(s):

Controlling Flat Roof Snow (p _t) =	69.3	psf
Sloped Roof Snow Load (p _s) =	69.3	psf
Rain on Sloped Roof Snow =	N/A	psf
Local Jurisdiction Minimum =	70	psf
Controlling Snow Load =	70	psf
Design Roof Snow Load =	70	psf

Ref Figure 7.6-2

Unbalanced Roof Snow Load (as required):

Roof length from Ridge to Eave (W) =	28	ft			
			For W≤2		
Windward Roof Snow Load (p _{sW}) =	20.79	psf	p _{sW} = 0	0.3*p _s	page 57
Leeward Roof Surcharge Load (p _{sLs}) =	47.8	psf	p _{sLs} = I*p _g	$p_{s} + h_{d}^{*} \gamma / S^{1/2}$	page 58
Leeward Surcharge Extent (L) =	9.91	ft	$L = 8/3*h_d*S^{1/2}$		page 58
Leeward Roof Snow Load (p_{sL}) =	117.08	psf	$p_{sL} = p_{sLs} + p_s$		page 58
Usight of Spaul Drift (b) -	0.00		h = 0.40+1.1/3+(1/4 4 5	
Height of Snow Drift $(h_d) =$	2.63	ft	$h_d = 0.43* I_u^{1/3} (p_g + 10)$	-1.5	page 61
(with $I_u = W$)					
Snow Density (y) =	25.7	pcf	γ = 0.13p _g + 14, 30p	cf max	page 59
Roof Slope run for a rise of one (S) =	2.000				


Client: Trout Creek SDA Project: Trout Creek SDA School Project #: 24-B101 Date: 4/22/2024 By: BL

FROELICH

Snow Drift Loads at Lower Roofs and Canopies ASCE 7-16 Section 7.7 (pg 59)

Drift: Lower Roof

<u>Drift Height</u>			Density		
Leeward Length of Upper Roof, I _u :	25.0 ft		γ:	25.70	
Windward Length of Lower Roof, I _u :	43.5 ft				
Ground Snow Load, p _g :	90.0 psf		Density, γ:	25.70 pcf	Eq. 7.7-1 (pg 59)
Leeward Drift Height, h _d :	2.48 ft	Controls			
Windward Drift Height, h _d :	2.46 ft				
Width of Drift			Maximum Dri	ft Intensity	
Height of Projection, h _r :	6.0 ft		Drift Intensity,	p _d :	64 psf
Roof Snow Load, p _f :	70.0 psf				-
Depth of Roof Snow, h _b :	2.72 ft				
Proj. above Roof Snow, h _c :	3.28 ft				
h _c /h _b	1.20 > 0.2, D	rift Calc. Red	q.		
4*h _d :	9.9 ft				
$4^{*}h_{d}^{2}/h_{c}$	7.5 ft				
Width of Drift, w:	9.9 ft				

USGS web services were down for some period of time and as a result this tool wasn't operational, resulting in *timeout* error. USGS web services are now operational so this tool should work as expected.

3020 MT-200, Trout Creek, MT 59874, USA

Latitude, Longitude: 47.8300171, -115.5826599

Lanuue,	Longitut	10: 47.8300171, -115.3820399
	Fir St.	Traut Creak Seventh Day
	S.	Trout Creek Seventh-Day Adventist Church
		Adventist Church
		Washington Dr
		(200)
Goog	gle	Map data ©2024
Date		4/22/2024, 4:30:21 PM
Design Cod	le Reference	Document ASCE7-16
Risk Catego	ory	II
Site Class		D - Default (See Section 11.4.3)
Туре	Value	Description
SS	0.424	MCE _R ground motion. (for 0.2 second period)
S ₁	0.136	MCE _R ground motion. (for 1.0s period)
S _{MS}	0.619	Site-modified spectral acceleration value
S _{M1}	0.318	Site-modified spectral acceleration value
S _{DS}	0.413	Numeric seismic design value at 0.2 second SA
S _{D1}	0.212	Numeric seismic design value at 1.0 second SA
Туре	Value	Description
SDC	D	Seismic design category
Fa	1.461	Site amplification factor at 0.2 second
Fv	2.327	Site amplification factor at 1.0 second
PGA	0.188	MCE _G peak ground acceleration
F _{PGA}	1.424	Site amplification factor at PGA
PGA _M	0.268	Site modified peak ground acceleration
TL	6	Long-period transition period in seconds
SsRT	0.424	Probabilistic risk-targeted ground motion. (0.2 second)
SsUH	0.47	Factored uniform-hazard (2% probability of exceedance in 50 years) spectral acceleration
SsD	1.5	Factored deterministic acceleration value. (0.2 second)
S1RT	0.136	Probabilistic risk-targeted ground motion. (1.0 second)
S1UH	0.149	Factored uniform-hazard (2% probability of exceedance in 50 years) spectral acceleration.
S1D	0.6	Factored deterministic acceleration value. (1.0 second)
PGAd PGA _{UH}	0.5 0.188	Factored deterministic acceleration value. (Peak Ground Acceleration) Uniform-hazard (2% probability of exceedance in 50 years) Peak Ground Acceleration
C _{RS}	0.902	Mapped value of the risk coefficient at short periods
C _{R1}	0.916	Mapped value of the risk coefficient at a period of 1 s
CV	0.983	Vertical coefficient

DISCLAIMER

While the information presented on this website is believed to be correct, <u>SEAOC</u> /<u>OSHPD</u> and its sponsors and contributors assume no responsibility or liability for its accuracy. The material presented in this web application should not be used or relied upon for any specific application without competent examination and verification of its accuracy, suitability and applicability by engineers or other licensed professionals. SEAOC / OSHPD do not intend that the use of this information replace the sound judgment of such competent professionals, having experience and knowledge in the field of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the results of the seismic data provided by this website. Users of the information from this website assume all liability arising from such use. Use of the output of this website does not imply approval by the governing building code bodies responsible for building code approval and interpretation for the building site described by latitude/longitude location in the search results of this website.

Client: Project: Project #: Date: By: Trout Dale SDA Trout Dale SDA School 24-B101 4/29/2024 HNI

FROELICH ENGINEERS: WIND FORCE CALCULATION - C&C Walls

ASCE 7-16 SECTION 30.6, 30.7

Design Wind Loads on Components and Cladding - Walls

Basic Wind Speeds	Input		
3 Second Gust $V_{3s} =$	105 mp	h	
Exposure Category =	В		
Wind Directionality Factor $K_d =$	0.85		Table 26.6-1 (page 266)
Mean Height of Roof, h =	19.67 ft		
Ground Elevation, $z_g =$	200 ft		Ground elevation above sea level (ft)
<u>Topographic Effects</u>	Input		
Hill Height H =	0 ft		Table 26.8-1 (page 267)
Length of $1/2$ hill height $L_h =$	1000 ft		Table 26.8-1 (page 267)
Dist. From Crest to Bldg. $x =$	100 ft		Table 26.8-1 (page 267)
Height Above Local Grade z =	15 ft		Table 26.8-1 (page 267)
Horizontal Attenuation Factor m =	1.5		Table 26.8-1 (page 267)
Height Attenuation Factor g =	3		Table 26.8-1 (page 267)
Shape Factor $K1/(H/Lh) =$	1.3		Table 26.8-1 (page 267)
Output - Topographic Mult	ipliers K ₁ =	0.00	
	$K_2 =$	0.93	
	$K_3 =$	0.96	
Topographic I	Factor $K_{zt} =$	1.00	
	2.t		
Ground Elevation Factor			
Ground Elevation Factor, $K_e =$	0.99		Table 26.9-1 (page 268)
<u>Terrain Exposure Constants</u>			
nominal height of boundary $z_g =$	1200		Table 26.11-1 (page 269)
3-s gust exponent $\alpha =$	7.00		Table 26.11-1 (page 269)

Pressure Coefficients Input

Velocity Pressure Exposure Coefficients K_h (see below) Table 26.10-1 (page 268)

	Height (ft)	K _h	q _h (psf)	Velocity
	15	0.70	16.7	Pressure
	20	0.70	16.7	Output q _z
	25	0.70	16.7	
	30	0.70	16.7	
	40	0.76	18.1	
	50	0.81	19.3	
	60	0.85	20.3	
	70	0.89	21.3	
	80	0.93	22.1	
	90	0.96	22.8	
	100	0.99	23.5	
	120	1.04	24.8	
h =	19.67	0.70	16.7	q _h

External Pressure Coefficients (GC_p) - Use Figure 30.3-1 for h <60 ft, 30.6-1 for h>60 ft

 $GC_{pi} = +/-$

Table 26.13-1 (page 271)

Pressure Coefficients on Exterior Surfaces of Walls

0.18

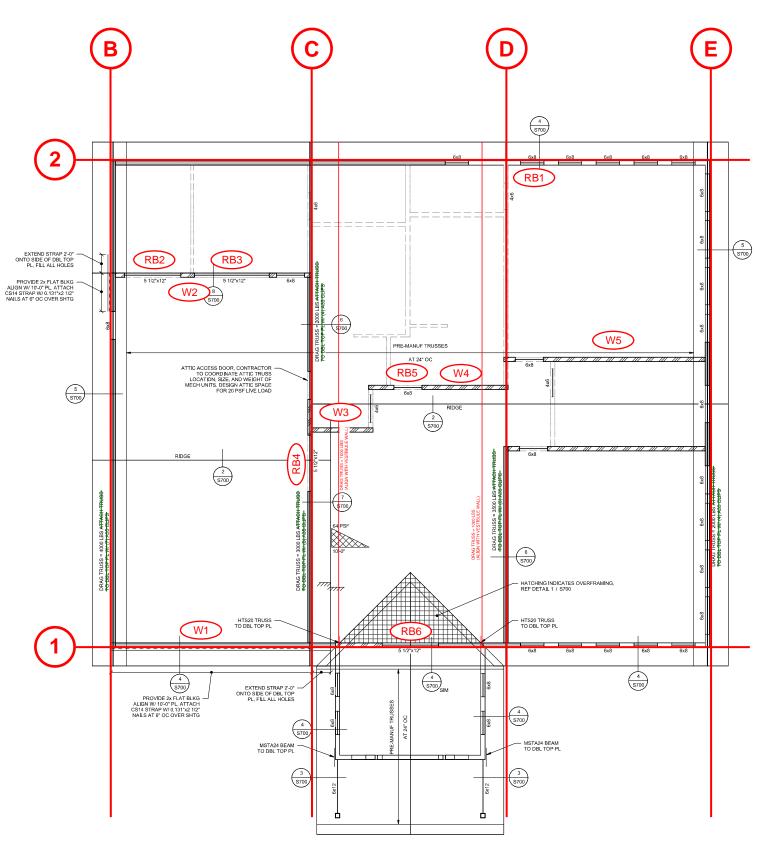
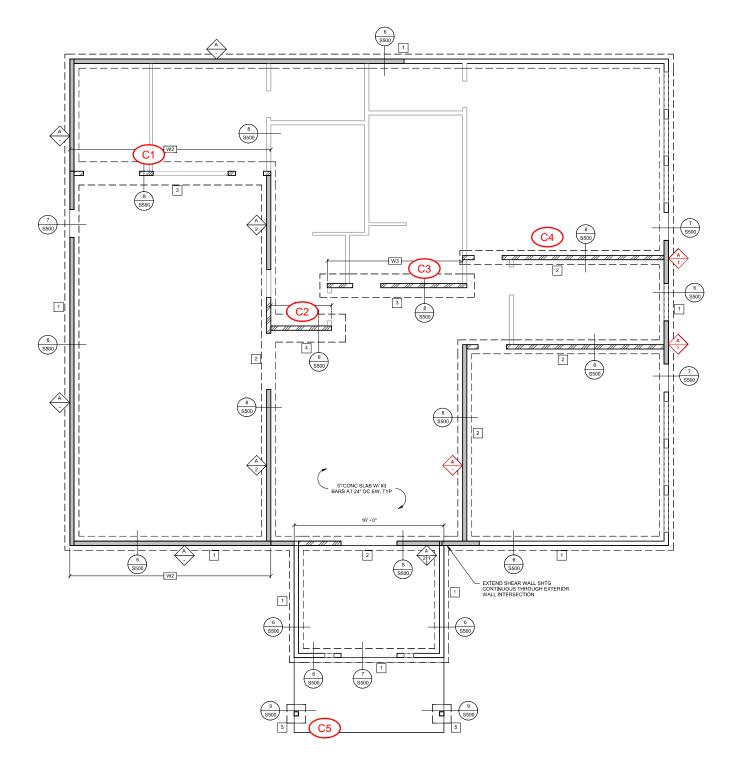

Zone	GCp
Zone 4 (+)	0.90
Zone 5 (+)	0.90
Zone 4 (-)	-1.00
Zone 5 (-)	-1.21

Figure 30.3-1 for h<=60 (page 335) Figure 30.5-1 for h>60 (page 363)

Calculate Wind Pressure, p, per Equation 30.3-1 or 30.5-1 (page 334), using q_h


Exterior Face of Surface

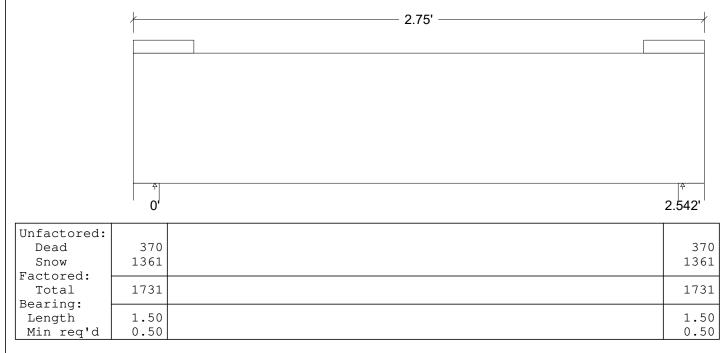
Zone	p (psf)	
Zone 4 (+)	18.02	with Positive Internal Pressure
Zone 5 (+)	18.02	with Positive Internal Pressure
Zone 4 (-)	-19.69	with Negative Internal Pressure
Zone 5 (-)	-23.11	with Negative Internal Pressure

MAIN FLOOR AND LATERAL LAYOUT REFERENCE ONLY

LOWER FLOOR LAYOUT FOR REFERENCE ONLY

	FROELICH CONSULTING ENGINEERS client: Trout Creek SDA project: Trout Creek SDA School job number: 24-B101 date: 4/25/2024 by: HNI ROOF BEAMS	
Roof Beam RB1	Location: Classroom Span: 2'-6" (clr) Loads: Loading Trib. Roof DL: 20 psf x 13.00 ft = 260 plf SL: 70 psf x 13.00 ft = 910 plf UB SL: 80 plf	6x8 DF#2
Roof Beam RB2	Location: DBL Doors @ Storage Span: 6'-0" (clr.) Loads: Loading Trib. Roof DL: 20 psf x 32.50 ft = 650 plf SL: 70 psf x 32.50 ft = 2275 plf	5-1/2"x12" 24F-V4 GL
Roof Beam RB3	Location: Serving Deck Span: 7'-9" (clr.) Loads: Roof DL: 20 psf x 32.50 ft = 650 plf SL: 70 psf x 32.50 ft = 2275 plf	5-1/2"x12" 24F-V4 GL
Roof Beam RB4	Location: Library DBL Door Span: 6'-0" (clr.) Loads: Roof DL: 20 psf x 4.00 ft = 80 plf SL: 70 psf x 4.00 ft = 280 plf	5-1/2"x12" 24F-V4 GL
Roof Beam RB5	Location: Library Door Span: 3'-0" (clr.) Loads: Roof DL: 20 psf x 32.50 ft = 650 plf SL: 70 psf x 32.50 ft = 2275 plf	6x8 DF#2
Roof Beam RB6	Location: Library Entry DBL Door Span: 5'-6" (clr) Loads: Roof DL: 20 psf x 16.00 ft = 320 plf SL: 70 psf x 16.00 ft = 1120 plf UB SL: 80 plf	5-1/2"x12" 24F-V4 GL
Roof Beam RB7	Location: Covered Entry Span: 5'-5" (clr.) Loads: Roof DL: 20 psf x 10.00 ft = 200 plf SL: 70 psf x 10.00 ft = 700 plf	6x8 DF#2

Apr. 25, 2024 10:50 RB1


Design Check Calculation Sheet

WoodWorks Sizer 2019 (Update 4)

Loads:

Load	Туре	Distribution	Pat-	Location	[ft]	Magnitud	e Unit
			tern	Start	End	Start	End
Load1	Dead	Full UDL				260.0	plf
Load2	Snow	Full UDL				910.0	plf
Load3	Snow	Full UDL				80.0	plf
Self-weight	Dead	Full UDL				9.8	plf

Maximum Reactions (lbs) and Bearing Lengths (in) :

Timber-soft, D.Fir-L, No.2, 6x8 (5-1/2"x7-1/2")

Supports: All - Lumber n-ply Column, D.Fir-L Stud Total length: 2.75'; Clear span: 2.5'; Volume = 0.8 cu.ft.; Post or timber Lateral support: top = at supports, bottom = at supports; **This section PASSES the design code check.**

Analysis vs. Allowable Stress and Deflection using NDS 2018 :

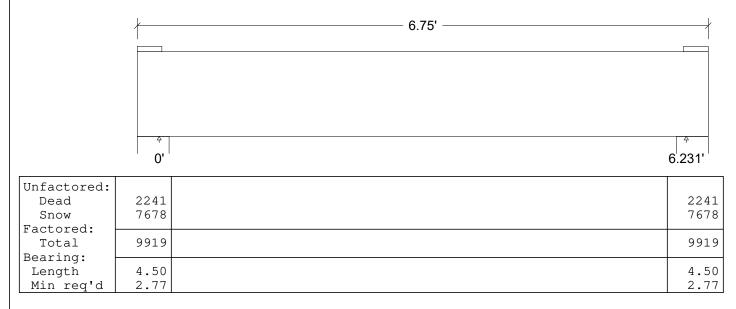
Criterion	Analysis Value	Design Value	Unit	Analysis/Design
Shear	fv = 29	Fv' = 195	psi	fv/Fv' = 0.15
Bending(+)	fb = 237	Fb' = 862	psi	fb/Fb' = 0.27
Dead Defl'n	0.00 = < L/999			
Live Defl'n	0.00 = < L/999	0.08 = L/360	in	0.04
Total Defl'n	0.01 = < L/999	0.13 = L/240	in	0.04

Design Notes:

 Analysis and design are in accordance with the ICC International Building Code (IBC 2018) and the National Design Specification (NDS 2018), using Allowable Stress Design (ASD). Design values are from the NDS Supplement.
 Please verify that the default deflection limits are appropriate for your application.

3. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1.

Apr. 25, 2024 13:41 | RB2


Design Check Calculation Sheet

WoodWorks Sizer 2023

Loads:

Load	Туре	Distribution	Pat-	Location [ft]		Magnitude		Unit
			tern	Start	End	Start	End	
Load1	Dead	Full UDL				650.0		plf
Load2	Snow	Full UDL				2275.0		plf
Self-weight	Dead	Full UDL				15.2		plf

Maximum Reactions (lbs) and Bearing Lengths (in) :

Glulam-Unbalan., West Species, 24F-V4 DF, 5-1/2"x12"

Supports: All - Lumber n-ply Column, D.Fir-L Stud

Total length: 6.75'; Clear span: 6'; Volume = 3.1 cu.ft.; 8 laminations, 5-1/2" maximum width,

Lateral support: top = at supports, bottom = at supports;

This section PASSES the design code check.

Analysis vs. Allowable Stress and Deflection using NDS 2018 :

Analysis Value	Design Value	Unit	Analysis/Design
fv = 134	Fv' = 305	psi	fv/Fv' = 0.44
fb = 1297	Fb' = 2733	psi	fb/Fb' = 0.47
0.02 = < L/999		_	
0.05 = < L/999	0.21 = L/360	in	0.26
0.08 = L/960	0.31 = L/240	in	0.25
	fv = 134 fb = 1297 0.02 = < L/999 0.05 = < L/999	fv = 134Fv' = 305fb = 1297Fb' = 27330.02 = < L/999	fv = 134Fv' = 305psifb = 1297Fb' = 2733psi0.02 = < L/999

Design Notes:

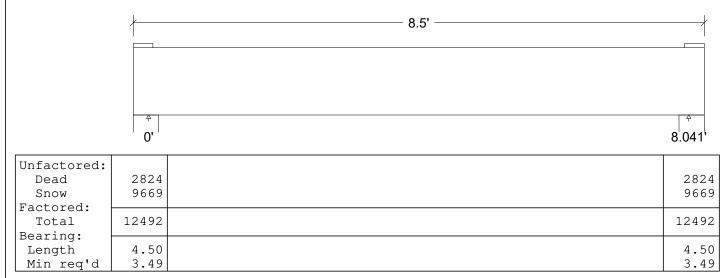
1. Analysis and design are in accordance with the ICC International Building Code (IBC 2021) and the National Design Specification (NDS 2018), using Allowable Stress Design (ASD). Design values are from the NDS Supplement.

2. Please verify that the default deflection limits are appropriate for your application.

3. Glulam design values are for materials conforming to ANSI 117-2015 and manufactured in accordance with ANSI A190.1-2012

- 4. GLULAM: bxd = actual breadth x actual depth.
- 5. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3.
- 6. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n).

Apr. 25, 2024 10:57 RB3


Design Check Calculation Sheet

WoodWorks Sizer 2023

Loads:

Load	Туре	Distribution	Pat-	Location [ft]		Magnitude		Unit
			tern	Start	End	Start	End	
Load1	Dead	Full UDL				650.0		plf
Load2	Snow	Full UDL				2275.0		plf
Self-weight	Dead	Full UDL				15.2		plf

Maximum Reactions (Ibs) and Bearing Lengths (in) :

Glulam-Unbalan., West Species, 24F-V4 DF, 5-1/2"x12"

Supports: All - Lumber n-ply Column, D.Fir-L Stud

Total length: 8.5'; Clear span: 7.75'; Volume = 3.9 cu.ft.; 8 laminations, 5-1/2" maximum width,

Lateral support: top = at supports, bottom = at supports;

This section PASSES the design code check.

Analysis vs. Allowable Stress and Deflection using NDS 2018 :

•		-		
Criterion	Analysis Value	Design Value	Unit	Analysis/Design
Shear	fv = 192	Fv' = 305	psi	fv/Fv' = 0.63
Bending(+)	fb = 2160	Fb' = 2725	psi	fb/Fb' = 0.79
Dead Defl'n	0.04 = < L/999			
Live Defl'n	0.15 = L/642	0.27 = L/360	in	0.56
Total Defl'n	0.22 = L/446	0.40 = L/240	in	0.54
h		•	•	

Design Notes:

1. Analysis and design are in accordance with the ICC International Building Code (IBC 2021) and the National Design Specification (NDS 2018), using Allowable Stress Design (ASD). Design values are from the NDS Supplement.

2. Please verify that the default deflection limits are appropriate for your application.

3. Glulam design values are for materials conforming to ANSI 117-2015 and manufactured in accordance with ANSI A190.1-2012

4. GLULAM: bxd = actual breadth x actual depth.

5. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3.

6. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n).

U		SOFTWARE FOR WOOD DESIGN						
				Apr. 25, 20	24 13:4	3 RB4		
				Calculation	n Shee	t		
Loads:								
Load	Туре	Distribution	Pat- tern	Location Start 1	[ft] End	Magnitude Start End	Unit	
Load1 Load2 Self-weight	Dead Snow Dead	Full UDL Full UDL Full UDL				80.0 280.0 15.2	plf plf plf	
Maximum Re	actions (lbs) a	and Bearing Lengt	hs (in)					
	1			6.25'				
	0',							6.042'
Unfactored: Dead Snow	296 875							296 875
Factored: Total	1171							1171
Bearing: Length Min req'd	1.50 0.50*	used: 1/2" for end suppo	rte					1.50 0.50*
	ng length setting t	asea. 1/2 101 ena suppor	15					
	Total length:	Glulam-Unbalan., W Supports: All - L 6.25'; Clear span: 6'; Vo	umber lume =	n-ply Column, 2.9 cu.ft.; 8 lai	D.Fir-L mination	Stud is, 5-1/2" maximur	n width,	

This section PASSES the design code check.

Analysis vs. Allowable Stress and Deflection using NDS 2018 : Criterion Analysis Value Value Design Unit Analysis/Design 17 Fv' = 305 fv/Fv' = Shear fv = psi 0.06 Fb' = 2734fb/Fb' = Bending(+) fb = 156psi 0.06 0.00 = < L/999Dead Defl'n Live Defl'n 0.01 = < L/9990.20 = L/3600.03 in Total Defl'n 0.03 0.01 = < L/9990.30 = L/240in

Design Notes:

1. Analysis and design are in accordance with the ICC International Building Code (IBC 2021) and the National Design Specification (NDS 2018), using Allowable Stress Design (ASD). Design values are from the NDS Supplement.

2. Please verify that the default deflection limits are appropriate for your application.

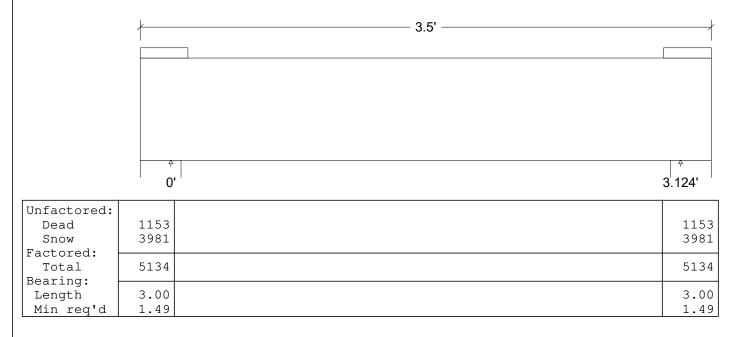
3. Glulam design values are for materials conforming to ANSI 117-2015 and manufactured in accordance with ANSI A190.1-2012

4. GLULAM: bxd = actual breadth x actual depth.

5. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3.

6. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n).

Apr. 25, 2024 11:49 RB5


Design Check Calculation Sheet

WoodWorks Sizer 2023

Loads:

Load	Туре	Distribution	Pat-	Location	[ft]	Magnitud	Magnitude	
			tern	Start	End	Start	End	
Load1	Dead	Full UDL				650.0		plf
Load2	Snow	Full UDL				2275.0		plf
Self-weight	Dead	Full UDL				9.8		plf

Maximum Reactions (lbs) and Bearing Lengths (in) :

Timber-soft, D.Fir-L, No.2, 6x8 (5-1/2"x7-1/2")

Supports: All - Lumber n-ply Column, D.Fir-L Stud Total length: 3.5'; Clear span: 3.0'; Volume = 1.0 cu.ft.; Post or timber Lateral support: top = at supports, bottom = at supports; This section PASSES the design code check.

Analysis vs. Allowable Stress and Deflection using NDS 2018 :

Analysis vs. Anol				5 2010 .	
Criterion	Analysis Value	Design	Value	Unit	Analysis/Design
Shear	fv = 93	Fv' =	195	psi	fv/Fv' = 0.48
Bending(+)	fb = 833	Fb' =	862	psi	fb/Fb' = 0.97
Dead Defl'n	0.01 = < L/999				
Live Defl'n	0.02 = < L/999	0.10 =	L/360	in	0.19
Total Defl'n	0.03 = < L/999	0.16 =	L/240	in	0.18

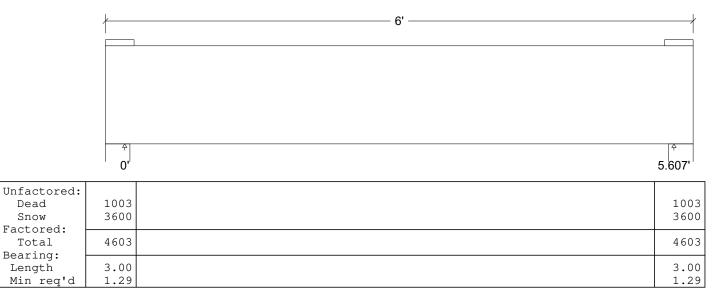
Design Notes:

1. Analysis and design are in accordance with the ICC International Building Code (IBC 2021) and the National Design Specification (NDS 2018), using Allowable Stress Design (ASD). Design values are from the NDS Supplement.

2. Please verify that the default deflection limits are appropriate for your application.

3. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1.

Apr. 25, 2024 13:44 RB6


Design Check Calculation Sheet

WoodWorks Sizer 2023

Loads:

Load	Туре	Distribution	Pat-	Location	[ft]	Magnitude	Unit
			tern	Start	End	Start End	
Load1	Dead	Full UDL				320.0	plf
Load2	Snow	Full UDL				1120.0	plf
Load3	Snow	Full UDL				80.0	plf
Self-weight	Dead	Full UDL				15.2	plf

Maximum Reactions (Ibs) and Bearing Lengths (in) :

Glulam-Unbalan., West Species, 24F-V4 DF, 5-1/2"x12"

Supports: All - Lumber n-ply Column, D.Fir-L Stud

Total length: 6.0'; Clear span: 5.5'; Volume = 2.8 cu.ft.; 8 laminations, 5-1/2" maximum width,

Lateral support: top = at supports, bottom = at supports;

This section PASSES the design code check.

Analysis vs. Allowable Stress and Deflection using NDS 2018 :

-			-	
Criterion	Analysis Value	Design Value	Unit	Analysis/Design
Shear	fv = 61	Fv' = 305	psi	fv/Fv' = 0.20
Bending(+)	fb = 549	Fb' = 2736	psi	fb/Fb' = 0.20
Dead Defl'n	0.01 = < L/999		_	
Live Defl'n	0.02 = < L/999	0.19 = L/360	in	0.10
Total Defl'n	0.03 = < L/999	0.28 = L/240	in	0.09
	Shear Bending(+) Dead Defl'n Live Defl'n	Shear fv = 61 Bending(+) fb = 549 Dead Defl'n 0.01 = < L/999 Live Defl'n 0.02 = < L/999	Shear $fv = 61$ $Fv' = 305$ Bending(+) $fb = 549$ $Fb' = 2736$ Dead Defl'n $0.01 = < L/999$ 1.999 Live Defl'n $0.02 = < L/999$ $0.19 = L/360$	Shear fv = 61 Fv' = 305 psi Bending(+) fb = 549 Fb' = 2736 psi Dead Defl'n 0.01 = L/999 1.19 L/360 in

Design Notes:

1. Analysis and design are in accordance with the ICC International Building Code (IBC 2021) and the National Design Specification (NDS 2018), using Allowable Stress Design (ASD). Design values are from the NDS Supplement.

2. Please verify that the default deflection limits are appropriate for your application.

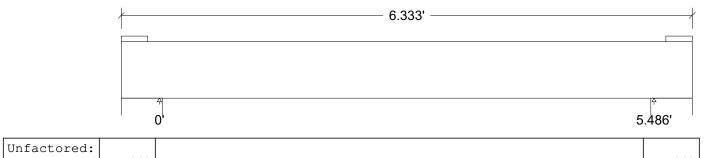
3. Glulam design values are for materials conforming to ANSI 117-2015 and manufactured in accordance with ANSI A190.1-2012

4. GLULAM: bxd = actual breadth x actual depth.

5. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3.

6. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n).

Apr. 25, 2024 17:07 | RB7


Design Check Calculation Sheet

WoodWorks Sizer 2023

Loads:

Load	Туре	Distribution	Pat-	Location [ft]		-)		Unit
			tern	Start	End	Start	End	
2	Dead	Full UDL				200.0		plf
Load2	Snow	Full UDL				700.0		plf
Self-weight	Dead	Full UDL				9.8		plf

Maximum Reactions (lbs) and Bearing Lengths (in) :

Dead	660	660
Snow	2217	2217
Factored: Total Bearing:	2877	2877
Length	5.50	5.50
Min req'd	0.84	0.84

Timber-soft, D.Fir-L, No.2, 6x8 (5-1/2"x7-1/2")

Supports: 1 - Lumber Post Column, Hem-Fir No.2; 2 - Lumber n-ply Column, D.Fir-L Stud; Total length: 6.31'; Clear span: 5.438'; Volume = 1.8 cu.ft.; Post or timber Lateral support: top = at supports, bottom = at supports; This section PASSES the design code check.

Analysis vs. Allowable Stress and Deflection using NDS 2018 :

Criterion	Analysis Value	Design	Value	Unit	Analysis/Design
Shear	fv = 69	Fv' =	195	psi	fv/Fv' = 0.35
Bending(+)	fb = 797	Fb' =	862	psi	fb/Fb' = 0.92
Dead Defl'n	0.02 = < L/999				
Live Defl'n	0.06 = < L/999	0.18 =	L/360	in	0.31
Total Defl'n	0.08 = L/799	0.27 =	L/240	in	0.30

Design Notes:

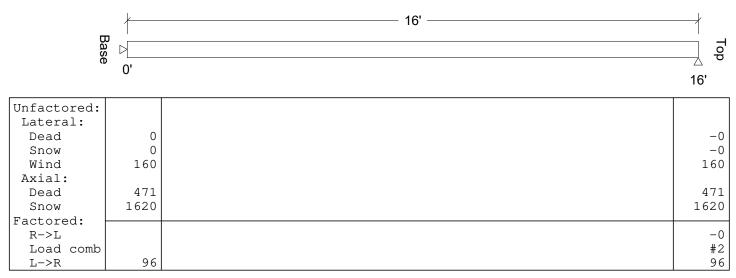
1. Analysis and design are in accordance with the ICC International Building Code (IBC 2021) and the National Design Specification (NDS 2018), using Allowable Stress Design (ASD). Design values are from the NDS Supplement. 2. Please verify that the default deflection limits are appropriate for your application.

Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1.

	FROELICH CONSULTING ENGINEERS client: Trout Creek SDA project: Trout Creek SDA School job number: 24-B101 date: 4/29/2024 by: HNI	
	WALLS	
Wall W1	Location: Multi-Purpose Height: 16'-0" Loads: Roof DL: 20 psf x 22.00 ft = 440 plf Roof SL: 70 psf x 22.00 ft = 1540 plf	2x6 DF#2 at 12" OC
	UB SL : 80 plf Out of Plane Wall Loading	
	OOP WL: 20 psf Controls = 20 psf Wind Controls OOP LL: 5 psf	
Wall W2	Location: Kitchen Height: 16'-0" Loads: Loading Trib.	
	Roof DL:20psf x26.00ft=520plfRoof SL:70psf x26.00ft=1820plf	2x6 DF#2 at 12" OC
	Out of Plane Wall Loading	
	OOP WL:0psf=5psfLive ControlsOOP LL:5psfControls	
Wall W3	Location: Library Height: 10'-0" Loads:	
	Loading Trib. Roof DL: 20 psf x 32.50 ft = 650 plf Roof SL: 70 psf x 32.50 ft = 2275 plf Drift SL: 64 psf x 11.75 = 752 plf	(2) 2x6 DF#2 at 24" OC
	Out of Plane Wall Loading	
	OOP WL: 0 psf = 5 psf Live Controls OOP LL: 5 psf Controls	
Wall W4	Location: Library Height: 10'-0" Loads:	
	LoadingTrib.Roof DL:20psf x32.50ft=650 plfRoof SL:70psf x32.50ft=2275 plf	(2) 2x6 DF#2 at 24" OC
	Out of Plane Wall Loading	
	OOP WL:0psf=5psfLive ControlsOOP LL:5psfControls	
Wall W5	Location: Classroom - Office Height: 10'-0" Loads:	
	LoadingTrib.Roof DL:20psf x19.38ft=388 plfRoof SL:70psf x19.38ft=1356 plf	2x6 DF#2 at 12" OC
	Out of Plane Wall Loading	
	OOP WL: 0 psf = 5 psf Live Controls OOP LL: 5 psf Controls	

Page 21 of 49

Apr. 25, 2024 15:29 W1


Design Check Calculation Sheet

WoodWorks Sizer 2023

Loads:

Load	Туре	Distribution	Location [ft]	Magnitude	Unit
			Start End	Start End	
Load1	Dead	Axial UDL	(Ecc. = 0.01")	440	plf
Load2	Snow	Axial UDL	(Ecc. = 0.01")	1540	plf
Load3	Snow	Axial UDL	(Ecc. = 0.01")	80	plf
Load4	Wind C&C	Full Area		20.00(12.0")	psf
Self-weight	Dead	Axial UDL		31	plf

Reactions (lbs):

Lumber n-ply, D.Fir-L, No.2, 2x6, 1-ply (1-1/2"x5-1/2")

Support: None

Spaced at 12.0" c/c; Total length: 16.0'; Volume = 0.9 cu.ft.

Pinned base; Load face = width(b); Ke x Lb: 1.0 x 0.0 = 0.0 ft; Ke x Ld: 1.0 x 16.0 = 16.0 ft; Repetitive factor: applied where

permitted (refer to online help);

This section PASSES the design code check.

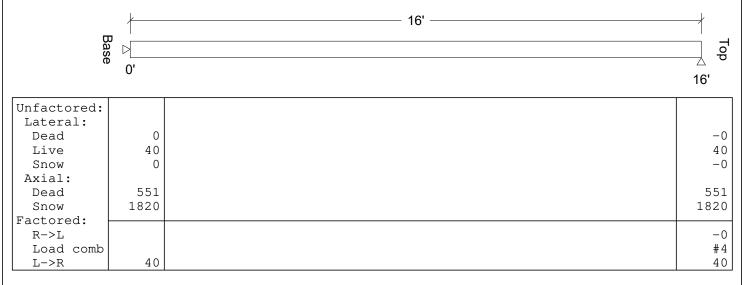
Analysis vs. Allowable Stress and Deflection using NDS 2018 :

Analysis Value	Design Value	Unit	Analysis/Design
fv = 17	Fv' = 288	psi	fv/Fv' = 0.06
fb = 609	Fb' = 2153	psi	fb/Fb' = 0.28
fc = 253	Fc' = 371	psi	fc/Fc' = 0.68
(axial + eccentri	c + side load ber	nding)	Eq.15.4-1 = 0.74
fc = 253	$Fc^{*} = 1708$	psi	fc/Fc* = 0.15
negligible			
0.37 = L/515	1.60 = L/120	in	0.23
0.37 = L/515	1.60 = L/120	in	0.23
	<pre>fv = 17 fb = 609 fc = 253 (axial + eccentri fc = 253 negligible 0.37 = L/515</pre>	fv = 17 Fv' = 288 fb = 609 Fb' = 2153 fc = 253 Fc' = 371 (axial + eccentric + side load ber fc = 253 Fc* = 1708 negligible 0.37 = L/515 1.60 = L/120	fv = 17 Fv' = 288 psi fb = 609 Fb' = 2153 psi fc = 253 Fc' = 371 psi (axial + eccentric + side load bending) fc = 253 Fc* = 1708 psi negligible 0.37 = L/515 1.60 = L/120 in

Design Notes:

 Analysis and design are in accordance with the ICC International Building Code (IBC 2021) and the National Design Specification (NDS 2018), using Allowable Stress Design (ASD). Design values are from the NDS Supplement.
 Please verify that the default deflection limits are appropriate for your application.

Apr. 25, 2024 15:48 W2


Design Check Calculation Sheet

WoodWorks Sizer 2023

Loads:

Load	Туре	Distribution	Location [ft]	Magnitude	Unit
			Start End	Start End	
Load1	Dead	Axial UDL	(Ecc. = 0.01")	520	plf
Load2	Snow	Axial UDL	(Ecc. = 0.01")	1820	plf
Load3	Live	Full Area		5.00(12.0")	psf
Self-weight	Dead	Axial UDL		31	plf

Reactions (lbs):

Lumber n-ply, D.Fir-L, No.2, 2x6, 1-ply (1-1/2"x5-1/2")

Support: None

Spaced at 12.0" c/c; Total length: 16.0'; Volume = 0.9 cu.ft.

Pinned base; Load face = width(b); Ke x Lb: 1.0 x 0.0 = 0.0 ft; Ke x Ld: 1.0 x 16.0 = 16.0 ft; Repetitive factor: applied where

permitted (refer to online help);

This section PASSES the design code check.

Analysis vs. Allowable Stress and Deflection using NDS 2018 :

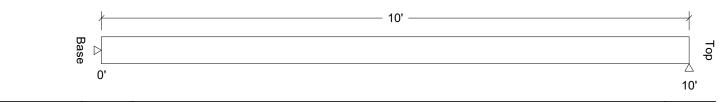
Criterion	Analysis Value	Design Value	Unit	Analysis/Design
Shear	fv = 7	Fv' = 180	psi	fv/Fv' = 0.04
Bending(+)	fb = 254	Fb' = 1345	psi	fb/Fb' = 0.19
Axial	fc = 287	Fc' = 371	psi	fc/Fc' = 0.78
Combined	(axial + eccentr:	c + side load ber	nding)	Eq.15.4-1 = 0.70
Axial Bearing	fc = 287	$Fc^{*} = 1708$	psi	$fc/Fc^* = 0.17$
Dead Defl'n	negligible			
Live Defl'n	0.22 = L/866	1.60 = L/120	in	0.14
Total Defl'n	0.22 = L/865	1.60 = L/120	in	0.14

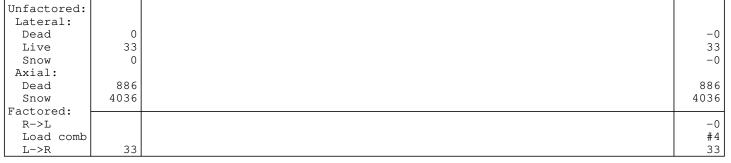
Design Notes:

1. Analysis and design are in accordance with the ICC International Building Code (IBC 2021) and the National Design Specification (NDS 2018), using Allowable Stress Design (ASD). Design values are from the NDS Supplement.

- 2. Please verify that the default deflection limits are appropriate for your application.
- 3. BUILT-UP COLUMNS: nailed or bolted built-up columns shall conform to the provisions of NDS Clause 15.3.

Apr. 25, 2024 15:33 | W3


Design Check Calculation Sheet


WoodWorks Sizer 2023

Loads:

Load	Туре	Distribution	Location [ft]	Magnitude	Unit
			Start End	Start End	
Load1	Dead	Axial UDL	(Ecc. = 0.01")	650	plf
Load2	Snow	Axial UDL	(Ecc. = 0.01")	2275	plf
Load3	Live	Full Area		5.00(16.0")	psf
Load4	Snow	Axial UDL	(Ecc. = 0.01")	752	plf
Self-weight	Dead	Axial UDL		15	plf

Reactions (lbs):

Lumber n-ply, D.Fir-L, No.2, 2x6, 1-ply (1-1/2"x5-1/2")

Support: None

Spaced at 16.0" c/c; Total length: 10.0'; Volume = 0.6 cu.ft.

Pinned base; Load face = width(b); Ke x Lb: 1.0 x 0.0 = 0.0 ft; Ke x Ld: 1.0 x 10.0 = 10.0 ft; Repetitive factor: applied where permitted

(refer to online help);

This section PASSES the design code check.

Analysis vs. Allowable Stress and Deflection using NDS 2018 :

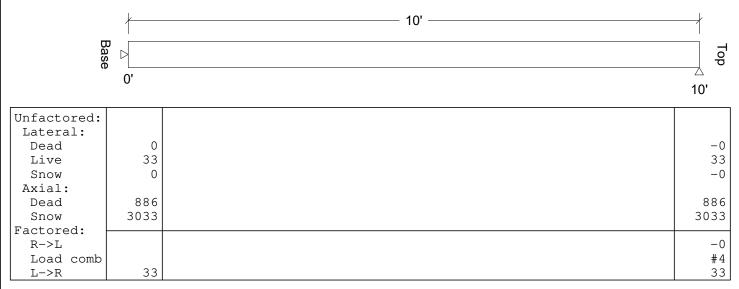
Criterion	Analysis Value	Design Value	Unit	Analysis/Design
Shear	fv = 6	Fv' = 180	psi	fv/Fv' = 0.03
Bending(+)	fb = 133	Fb' = 1345	psi	fb/Fb' = 0.10
Axial	fc = 597	Fc' = 839	psi	fc/Fc' = 0.71
Combined	(axial + eccentr:	c moment)	_	Eq.15.4-3 = 0.51
Axial Bearing	fc = 597	$Fc^{*} = 1708$	psi	$fc/Fc^* = 0.35$
Dead Defl'n	negligible			
Live Defl'n	0.05 = < L/999	1.00 = L/120	in	0.05
Total Defl'n	0.05 = < L/999	1.00 = L/120	in	0.05

Design Notes:

1. Analysis and design are in accordance with the ICC International Building Code (IBC 2021) and the National Design Specification (NDS 2018), using Allowable Stress Design (ASD). Design values are from the NDS Supplement.

2. Please verify that the default deflection limits are appropriate for your application.

Apr. 25, 2024 15:35 W4


Design Check Calculation Sheet

WoodWorks Sizer 2023

Loads:

Load	Туре	Distribution	Location [ft]	Magnitude	Unit
			Start End	Start End	
Load1	Dead	Axial UDL	(Ecc. = 0.01")	650	plf
Load2	Snow	Axial UDL	(Ecc. = 0.01")	2275	plf
Load3	Live	Full Area		5.00(16.0")	psf
Self-weight	Dead	Axial UDL		15	plf

Reactions (lbs):

Lumber n-ply, D.Fir-L, No.2, 2x6, 1-ply (1-1/2"x5-1/2")

Support: None

Spaced at 16.0" c/c; Total length: 10.0'; Volume = 0.6 cu.ft.

```
Pinned base; Load face = width(b); Ke x Lb: 1.0 x 0.0 = 0.0 ft; Ke x Ld: 1.0 x 10.0 = 10.0 ft; Repetitive factor: applied where
```

permitted (refer to online help);

This section PASSES the design code check.

Analysis vs. Allowable Stress and Deflection using NDS 2018 :

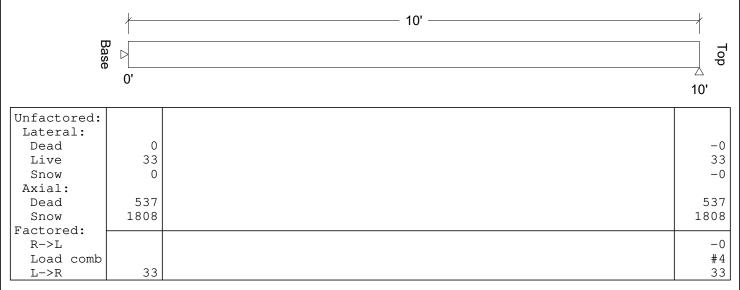
•		•		
Criterion	Analysis Value	Design Value	Unit	Analysis/Design
Shear	fv = 6	Fv' = 180	psi	fv/Fv' = 0.03
Bending(+)	fb = 133	Fb' = 1345	psi	fb/Fb' = 0.10
Axial	fc = 475	Fc' = 839	psi	fc/Fc' = 0.57
Combined	(axial + eccentr:	c moment)		Eq.15.4-3 = 0.32
Axial Bearing	fc = 475	$Fc^* = 1708$	psi	$fc/Fc^* = 0.28$
Dead Defl'n	negligible			
Live Defl'n	0.05 = < L/999	1.00 = L/120	in	0.05
Total Defl'n	0.05 = < L/999	1.00 = L/120	in	0.05
IOCAI DEII II	0.03 = < 1755	1.00 - 1/120		0.03

Design Notes:

1. Analysis and design are in accordance with the ICC International Building Code (IBC 2021) and the National Design Specification (NDS 2018), using Allowable Stress Design (ASD). Design values are from the NDS Supplement. 2. Please verify that the default deflection limits are appropriate for your application.

Page 25 of 49

Apr. 25, 2024 15:36 W5


Design Check Calculation Sheet

WoodWorks Sizer 2023

Loads:

Load	Туре	Distribution	Location [ft]	Magnitude	Unit
			Start End	Start End	
Load1	Dead	Axial UDL	(Ecc. = 0.01")	388	plf
Load2	Snow	Axial UDL	(Ecc. = 0.01")	1356	plf
Load3	Live	Full Area		5.00(16.0")	psf
Self-weight	Dead	Axial UDL		15	plf

Reactions (lbs):

Lumber n-ply, D.Fir-L, No.2, 2x6, 1-ply (1-1/2"x5-1/2")

Support: None

Spaced at 16.0" c/c; Total length: 10.0'; Volume = 0.6 cu.ft.

```
Pinned base; Load face = width(b); Ke x Lb: 1.0 x 0.0 = 0.0 ft; Ke x Ld: 1.0 x 10.0 = 10.0 ft; Repetitive factor: applied where
```

permitted (refer to online help);

This section PASSES the design code check.

Analysis vs. Allowable Stress and Deflection using NDS 2018 :

			-	
Criterion	Analysis Value	Design Value	Unit	Analysis/Design
Shear	fv = 6	Fv' = 180	psi	fv/Fv' = 0.03
Bending(+)	fb = 132	Fb' = 1345	psi	fb/Fb' = 0.10
Axial	fc = 284	Fc' = 839	psi	fc/Fc' = 0.34
Combined	(axial + eccentr:	c + side load ber	nding)	Eq.15.4-1 = 0.16
Axial Bearing	fc = 284	$Fc^* = 1708$	psi	$fc/Fc^* = 0.17$
Dead Defl'n	negligible		_	
Live Defl'n	0.05 = < L/999	1.00 = L/120	in	0.05
Total Defl'n	0.05 = < L/999	1.00 = L/120	in	0.05
		•		

Design Notes:

1. Analysis and design are in accordance with the ICC International Building Code (IBC 2021) and the National Design Specification (NDS 2018), using Allowable Stress Design (ASD). Design values are from the NDS Supplement. 2. Please verify that the default deflection limits are appropriate for your application.

	FROELICH CONSULTING ENGINEERS client: Trout Creek SDA project: Trout Creek SDA School job number: 24-B101 date: 5/1/2024 by: HNI Columns & Footings	NOTE: Reference column and footing tables on the following pages for all columns not specifically calculated in this calculation package.
Strip FTG C1	Location:Under W2Height:2'-0"Loads: 100 psf x Roof DL:20psf x20psf x21psf x20psf x20psf x20psf x20psf x20psf x21psf x23in/12in x10in/12in x10in/12in x20psf x2781plfBearing Capacity:Allowable Bearing2011120.74	Support: 2x6 DF#2 @ 12" oc Strip Footing: 30"x10"x Cont FTG w/ (4) #4 Bar Cont
Strip FTG C2	Location: Under W3 Height: 2'-0" Loads: Loading Trib. Roof DL: 20 psf x 32.50 ft = 650 plf Roof SL: 70 psf x 32.50 ft = 3027 plf (with drift) Wall DL: 8 psf x 10.00 ft = 0 plf Floor DL: 10 psf x 0.00 ft = 0 plf Floor LL: 40 psf x 0.00 ft = 0 plf 36 in/12in x 10 in/12in x 150 psf = 375 plf Controling Load Case: DL+SL = 4132 plf Bearing Capacity: Allowable Bearing Actual Bearing DCR 1500 1377 0.92	Support: (2) 2x6 DF#2 @ 24" oc Strip Footing: 36"x10"x Cont FTG w/ (4) #4 Bar Cont

Strip FTG C3	Location: Under W4 Height: 2'-0" Loads: Roof DL: 20 psf x 32.50 ft = 650 plf Roof SL: 70 psf x 32.50 ft = 2275 plf Wall DL: 8 psf x 10.00 ft = 80 plf Floor DL: 10 psf x 0.00 ft = 0 plf Floor LL: 40 psf x 0.00 ft = 0 plf 30 in/12in x 10 in/12in x 150 psf = 313 plf <u>Controling Load Case: DL+SL</u> = 3318 plf <u>Bearing Capacity:</u>	Support: 2x6 DF#2 @ 24" oc Strip Footing: 30"x10"x Cont FTG w/ (4) #4 Bar Cont
	Allowable BearingActual BearingDCR150013270.88	
Strip FTG C4	Location: Under W5 Height: 2'-0" Loads: Loading Trib. Roof DL: 20 psf x 19.38 ft = 388 plf Roof SL: 70 psf x 19.38 ft = 1357 plf Wall DL: 8 psf x 10.00 ft = 80 plf Floor DL: 10 psf x 0.00 ft = 0 plf Floor LL: 40 psf x 0.00 ft = 0 plf 18 in/12in x 10 in/12in x 150 psf = 188 plf Controling Load Case: DL+SL = 2012 plf Bearing Capacity: Allowable Bearing Actual Bearing DCR 1500 1341 0.89	Support: 2x6 DF#2 @ 12" oc Strip Footing: 18"x10"x Cont FTG w/ (2) #4 Bar Cont
Column C5	Location: Covered Entry Height: 10'-0" Loads: Loading Load Ratio	Column: 6x6 HF#2
	$\begin{array}{rcl} \text{RB7 DL:} & \begin{array}{rcl} 660 & \text{lbs} & x & 1 & = & 660 & \text{lbs} \\ \text{LL:} & 0 & \text{lbs} & x & 1 & = & 0 & \text{lbs} \\ \text{SL:} & \begin{array}{rcl} 2217 & \text{lbs} & x & 1 & = & \begin{array}{rcl} 2217 & \text{lbs} & \end{array} \\ \hline \hline$	Footing: 24"x24"x10" Conc FTG w/ (3) #4 Bars EW

Combined Footing							PI	oject File	e: Kitchen	Clab.cco
LIC# : KW-06014743, Build:20.23.05.25	5		FROELIC	H CONSULTIN	G ENGINEER	RS		(c) ENE	RCALC INC	1983-2023
DESCRIPTION: Kitchen T	hickened	l Slab								
Code References										
Calculations per ACI 318-14, I Load Combinations Used : IBC		CBC 20	019, ASCE	7-16						
eneral Information										
Material Properties						sign Settings				
f'c : Concrete 28 day strength fy : Rebar Yield			2.50 ksi 60.0 ksi			poting weight as de Pedestal weight as o		, ,	Yes No	
Ec : Concrete Elastic Modulus		3,1	122.0 ksi			6 Bending Reinf (ba			NU	
Concrete Density			145.0 pcf		Min Allow %	6 Temp Reinf (base	ed on thick		0.00	180
0	exure : Shear :	(0.90 0.750			Irning Safety Facto Safety Factor	r			1.0: 1 1.0: 1
oil Information	ileai .	,	5.750		win Siung	J Salety Factor				1.0. 1
Allowable Soil Bearing			1.50 ksf		earing Incr					
Increase Bearing By Footing Weig	ght		No			epth below soil surf			ft	I
Soil Passive Sliding Resistance	-		250.0 pcf		Allowable p	ressure increase p			k	sf
(Uses entry for "Footing b	base depth l	below so	oil surface" f			of footing is below			ft	I
Coefficient of Soil/Concrete Friction	n		0.30			d on footing Width ressure increase p			k	sf
				v	when maxin	num length or widtl	n is greater	tha	ft	
						ed Bearing Pressu zero implies no lim			10.0 k	sf
						ble Soil Bearing	(1)		1.50 k	sf
					(Allowable S	Soil Bearing adjust	ed for footil	ng weigh	t and	
Dimensions & Reinforcing						in increases as sp	ecilieu by t	1301.)		
mensions a remotioning										
Distance Left of Column #1		250 #							Δς	۵s
Distance Left of Column #1 Between Columns	= 3	.250 ft 2.0 ft	Pedestal d	limensions		Bars left of Col #	t Count	Size #	As Provided	As Req'd
Distance Left of Column #1 Between Columns Distance Right of Column #2	=	.250 ft 2.0 ft .250 ft		Col #1	Col #2	Bottom Bars	4.0	4	Provided 0.80	Req'd 0.540 in^
Between Columns	= = 4	2.0 ft	Sq. Dim.	Col #1 = 12.0	12.0 in	Bottom Bars Top Bars	-		Provided	Req'd 0.540 in^
Between Columns Distance Right of Column #2	= = 4 =	2.0 ft .250 ft		Col #1		Bottom Bars Top Bars Bars Btwn Cols Bottom Bars	4.0 4.0 5.0	4 4 4	Provided 0.80 0.80 1.0	Req'd 0.540 in 0.0 in 0.8138 in
Between Columns Distance Right of Column #2 Total Footing Length	= = 4 = =	2.0 ft 250 ft 9.50 ft	Sq. Dim.	Col #1 = 12.0	12.0 in	Bottom Bars Top Bars Bars Btwn Cols Bottom Bars Top Bars	4.0 4.0 5.0 4.0	4 4	Provided 0.80 0.80	Req'd 0.540 in 0.0 in 0.8138 in
Between Columns Distance Right of Column #2 Total Footing Length Footing Width	= 4 = 4 = -	2.0 ft .250 ft 9.50 ft 2.50 ft 10.0 in	Sq. Dim. Height	Col #1 = 12.0	12.0 in	Bottom Bars Top Bars Bars Btwn Cols Bottom Bars	4.0 4.0 5.0 4.0	4 4 4	Provided 0.80 0.80 1.0	Req'd 0.540 in/2 0.0 in/2 0.8138 in/2 0.0 in/2
Between Columns Distance Right of Column #2 Total Footing Length Footing Width Footing Thickness	= 4 = 4 =	2.0 ft 250 ft 9.50 ft 2.50 ft 10.0 in	Sq. Dim. Height = 3	Col #1 = 12.0 =	12.0 in	Bottom Bars Top Bars Bars Btwn Cols Bottom Bars Top Bars Bars Right of Co	4.0 4.0 5.0 4.0	4 4 4 4	Provided 0.80 0.80 1.0 0.80	Req'd 0.540 in/2 0.0 in/2 0.8138 in/2 0.0 in/2
Between Columns Distance Right of Column #2 Total Footing Length Footing Width Footing Thickness Rebar Center to Concrete Edge	= 4 = 4 =	2.0 ft 250 ft 9.50 ft 2.50 ft 10.0 in	Sq. Dim. Height = 3	Col #1 = 12.0 =	12.0 in	Bottom Bars Top Bars Bars Btwn Cols Bottom Bars Top Bars Bars Right of Co Bottom Bars	4.0 4.0 5.0 4.0 91 #2 4.0	4 4 4 4	Provided 0.80 0.80 1.0 0.80 0.80	Req'd 0.540 in ^ 0.0 in ^ 0.8138 in ^ 0.0 in ^
Between Columns Distance Right of Column #2 Total Footing Length Footing Width Footing Thickness Rebar Center to Concrete Edge Rebar Center to Concrete Edge Applied Loads Applied @ Left Column	= 4 = 4 = 2 = 2 @ Top @ Bottom	2.0 ft 250 ft 9.50 ft 2.50 ft 10.0 in	Sq. Dim. Height = 3	Col #1 = 12.0 =	12.0 in in	Bottom Bars Top Bars Bars Btwn Cols Bottom Bars Top Bars Bars Right of Co Bottom Bars Top Bars	4.0 4.0 5.0 4.0 91 #2 4.0	4 4 4 4	Provided 0.80 0.80 1.0 0.80 0.80 0.80 H	Req'd 0.540 in/2 0.0 in/2 0.8138 in/2 0.0 in/2
Between Columns Distance Right of Column #2 Total Footing Length Footing Width Footing Thickness Rebar Center to Concrete Edge Rebar Center to Concrete Edge Rebar Center to Concrete Edge Applied Loads Applied @ Left Column Axial Load Downward	= 4 = 4 =	2.0 ft 250 ft 9.50 ft 2.50 ft 10.0 in	Sq. Dim. Height = 3 = 3	Col #1 = 12.0 = .0 in .0 in	12.0 in in	Bottom Bars Top Bars Bars Btwn Cols Bottom Bars Top Bars Bars Right of Co Bottom Bars Top Bars	4.0 4.0 5.0 4.0 1#2 4.0 4.0 4.0	4 4 4 4	Provided 0.80 0.80 1.0 0.80 0.80 0.80 H k	Req'd 0.540 in^: 0.0 in^: 0.8138 in^: 0.0 in^: 0.70 in^:
Between Columns Distance Right of Column #2 Total Footing Length Footing Width Footing Thickness Rebar Center to Concrete Edge Rebar Center to Concrete Edge Applied Loads Applied @ Left Column	= 4 = 4 = 2 = 2 @ Top @ Bottom	2.0 ft 250 ft 9.50 ft 2.50 ft 10.0 in	Sq. Dim. Height = 3 = 3	Col #1 = 12.0 = .0 in .0 in	12.0 in in	Bottom Bars Top Bars Bars Btwn Cols Bottom Bars Top Bars Bars Right of Co Bottom Bars Top Bars	4.0 4.0 5.0 4.0 1#2 4.0 4.0 4.0	4 4 4 4	Provided 0.80 0.80 1.0 0.80 0.80 0.80 H	Req'd 0.540 in^2 0.0 in^2 0.8138 in^2 0.0 in^2 0.70 in^2
Between Columns Distance Right of Column #2 Total Footing Length Footing Width Footing Thickness Rebar Center to Concrete Edge Rebar Center to Concrete Edge Applied Loads Applied @ Left Column Axial Load Downward Moment (+CW) Shear (+X) Applied @ Right Column	= 4 = 4 = 2 = 0 @ Top = @ Bottom = 2 = 2	2.0 ft .250 ft 9.50 ft 2.50 ft 10.0 in 2.241	Sq. Dim. Height = 3 = 3	Col #1 = 12.0 = .0 in .0 in	12.0 in in S 7.6	Bottom Bars Top Bars Bars Btwn Cols Bottom Bars Top Bars Bars Right of Co Bottom Bars Top Bars W 78	4.0 4.0 5.0 4.0 1#2 4.0 4.0 4.0	4 4 4 4	Provided 0.80 0.80 1.0 0.80 0.80 0.80 H k k-1 k	Req'd 0.540 in^: 0.0 in^: 0.8138 in^: 0.0 in^: 0.70 in^:
Between Columns Distance Right of Column #2 Total Footing Length Footing Width Footing Thickness Rebar Center to Concrete Edge Rebar Center to Concrete Edge Rebar Center to Concrete Edge Applied Loads Applied @ Left Column Axial Load Downward Moment (+CW) Shear (+X) Applied @ Right Column Axial Load Downward	= 4 = 4 = 2 @ Top @ Bottom = 2 = 2 = 2	2.0 ft 250 ft 9.50 ft 2.50 ft 10.0 in	Sq. Dim. Height = 3 = 3	Col #1 = 12.0 = .0 in .0 in	12.0 in in	Bottom Bars Top Bars Bars Btwn Cols Bottom Bars Top Bars Bars Right of Co Bottom Bars Top Bars W 78	4.0 4.0 5.0 4.0 1#2 4.0 4.0 4.0	4 4 4 4	Provided 0.80 0.80 1.0 0.80 0.80 0.80 H k k-1 k k k-1 k	Req'd 0.540 in^2 0.0 in^2 0.8138 in^2 0.0 in^2 0.70 in^2 0.0 in^2
Between Columns Distance Right of Column #2 Total Footing Length Footing Width Footing Thickness Rebar Center to Concrete Edge Rebar Center to Concrete Edge Applied Loads Applied @ Left Column Axial Load Downward Moment (+CW) Shear (+X) Applied @ Right Column	= 4 = 4 = 2 = 0 @ Top = @ Bottom = 2 = 2	2.0 ft .250 ft 9.50 ft 2.50 ft 10.0 in 2.241	Sq. Dim. Height = 3 = 3	Col #1 = 12.0 = .0 in .0 in	12.0 in in S 7.6	Bottom Bars Top Bars Bars Btwn Cols Bottom Bars Top Bars Bars Right of Co Bottom Bars Top Bars W 78	4.0 4.0 5.0 4.0 1#2 4.0 4.0 4.0	4 4 4 4	Provided 0.80 0.80 1.0 0.80 0.80 0.80 H k k-1 k	Req'd 0.540 in^2 0.0 in^2 0.8138 in^2 0.0 in^2 0.70 in^2 0.0 in^2
Between Columns Distance Right of Column #2 Total Footing Length Footing Width Footing Thickness Rebar Center to Concrete Edge Rebar Center to Concrete Edge Rebar Center to Concrete Edge Applied Loads Applied @ Left Column Axial Load Downward Moment (+CW) Shear (+X) Applied @ Right Column Axial Load Downward Moment (+CW)	= 4 = 4 = 2 = 0 © Top = 0 Bottom = 2 = 2 = 2 = 2	2.0 ft .250 ft 9.50 ft 2.50 ft 10.0 in 2.241	Sq. Dim. Height = 3 = 3	Col #1 = 12.0 = .0 in .0 in	12.0 in in S 7.6	Bottom Bars Top Bars Bars Btwn Cols Bottom Bars Top Bars Bars Right of Co Bottom Bars Top Bars W 78	4.0 4.0 5.0 4.0 1#2 4.0 4.0 4.0	4 4 4 4	Provided 0.80 0.80 1.0 0.80 0.80 0.80 H k k-1 k k-1	Req'd 0.540 in^: 0.0 in^: 0.8138 in^: 0.0 in^: 0.70 in^: 0.0 in^:
Between Columns Distance Right of Column #2 Total Footing Length Footing Width Footing Thickness Rebar Center to Concrete Edge Rebar Center to Concrete Edge Rebar Center to Concrete Edge Applied Loads Applied @ Left Column Axial Load Downward Moment (+CW) Shear (+X) Applied @ Right Column Axial Load Downward Moment (+CW) Shear (+X)	= 4 = 4 = 2 @ Top @ Bottom = 2 = 2 = 2 = 2 = 2	2.0 ft .250 ft 9.50 ft 2.50 ft 10.0 in 2.241	Sq. Dim. Height = 3 = 3	Col #1 = 12.0 = .0 in .0 in	12.0 in in S 7.6	Bottom Bars Top Bars Bars Btwn Cols Bottom Bars Top Bars Bars Right of Co Bottom Bars Top Bars W 78	4.0 4.0 5.0 4.0 1#2 4.0 4.0 4.0	4 4 4 4	Provided 0.80 0.80 1.0 0.80 0.80 0.80 H k k-1 k k-1	Req'd 0.540 in^: 0.0 in^: 0.8138 in^: 0.0 in^: 0.70 in^: 0.0 in^:
Between Columns Distance Right of Column #2 Total Footing Length Footing Width Footing Thickness Rebar Center to Concrete Edge Rebar Center to Concrete Edge Rebar Center to Concrete Edge Applied Loads Applied @ Left Column Axial Load Downward Moment (+CW) Shear (+X) Applied @ Right Column Axial Load Downward Moment (+CW) Shear (+X)	= 4 = 4 = 2 @ Top @ Bottom = 2 = 2 = 2 = 2 = 2	2.0 ft .250 ft 9.50 ft 2.50 ft 10.0 in 2.241	Sq. Dim. Height = 3 = 3	Col #1 = 12.0 = .0 in .0 in	12.0 in in S 7.6	Bottom Bars Top Bars Bars Btwn Cols Bottom Bars Top Bars Bars Right of Co Bottom Bars Top Bars W 78	4.0 4.0 5.0 4.0 1#2 4.0 4.0 4.0	4 4 4 4	Provided 0.80 0.80 1.0 0.80 0.80 0.80 H k k-1 k k-1	Req'd 0.540 in^ 0.0 in^ 0.8138 in^ 0.0 in^ 0.70 in^
Between Columns Distance Right of Column #2 Total Footing Length Footing Width Footing Thickness Rebar Center to Concrete Edge Rebar Center to Concrete Edge Applied Loads Applied @ Left Column Axial Load Downward Moment (+CW) Shear (+X) Applied @ Right Column Axial Load Downward Moment (+CW) Shear (+X) Overburden	= 4 = 4 = 2 @ Top @ Bottom = 2 = 2 = 2 = 2 = 2 = 2 = 2	2.0 ft .250 ft 9.50 ft 2.50 ft 10.0 in 2.241	Sq. Dim. Height = 3 = 3 Lr	Col #1 = 12.0 = .0 in .0 in L	12.0 in in S 7.6 9.60	Bottom Bars Top Bars Bars Btwn Cols Bottom Bars Top Bars Bars Right of Co Bottom Bars Top Bars W 78	4.0 4.0 5.0 4.0 1#2 4.0 4.0 4.0	4 4 4 4	Provided 0.80 0.80 1.0 0.80 0.80 0.80 H k k-1 k k-1	Req'd 0.540 in^ 0.0 in^ 0.8138 in^ 0.0 in^ 0.70 in^
Between Columns Distance Right of Column #2 Total Footing Length Footing Width Footing Thickness Rebar Center to Concrete Edge Rebar Center to Concrete Edge Applied Loads Applied @ Left Column Axial Load Downward Moment (+CW) Shear (+X) Applied @ Right Column Axial Load Downward Moment (+CW) Shear (+X) Overburden	= 4 $= 4$ $= 4$ $= 4$ $= 6$ $= 6$ $= 6$ $= 6$ $= 2$	2.0 ft .250 ft 9.50 ft 2.50 ft 10.0 in 2.241	Sq. Dim. Height = 3 = 3 Lr	Col #1 = 12.0 = .0 in .0 in	12.0 in in S 7.6	Bottom Bars Top Bars Bars Btwn Cols Bottom Bars Top Bars Bars Right of Co Bottom Bars Top Bars W 78	4.0 4.0 5.0 4.0 1#2 4.0 4.0 4.0	4 4 4 4	Provided 0.80 0.80 1.0 0.80 0.80 0.80 H k k-1 k k-1	Req'd 0.540 in^2 0.0 in^2 0.0 in^2 0.70 in^2 it
Between Columns Distance Right of Column #2 Total Footing Length Footing Width Footing Thickness Rebar Center to Concrete Edge Rebar Center to Concrete Edge Applied Loads Applied @ Left Column Axial Load Downward Moment (+CW) Shear (+X) Applied @ Right Column Axial Load Downward Moment (+CW) Shear (+X) Overburden	= 4 = 4 = 2 @ Top @ Bottom = 2 = 2 = 2 = 2 = 2 = 2 = 2	2.0 ft .250 ft 9.50 ft 2.50 ft 10.0 in 2.241	Sq. Dim. Height = 3 = 3 Lr	Col #1 = 12.0 = .0 in .0 in L	12.0 in in S 7.6 9.60	Bottom Bars Top Bars Bars Btwn Cols Bottom Bars Top Bars Bars Right of Co Bottom Bars Top Bars W 78	4.0 4.0 5.0 4.0 1#2 4.0 4.0 4.0	4 4 4 4	Provided 0.80 0.80 1.0 0.80 0.80 0.80 H k k-1 k k-1	Req'd 0.540 in ^2 0.0 in ^2 0.8138 in ^2 0.0 in ^2 0.70 in ^2 0.0 in ^2
Between Columns Distance Right of Column #2 Total Footing Length Footing Width Footing Thickness Rebar Center to Concrete Edge Rebar Center to Concrete Edge Applied Loads Applied @ Left Column Axial Load Downward Moment (+CW) Shear (+X) Applied @ Right Column Axial Load Downward Moment (+CW) Shear (+X) Overburden	= 4 $= 4$ $= 4$ $= 4$ $= 6$ $= 6$ $= 6$ $= 6$ $= 2$	2.0 ft .250 ft 9.50 ft 2.50 ft 10.0 in 2.241	Sq. Dim. Height = 3 = 3 <u>Lr</u>	Col #1 = 12.0 = .0 in .0 in L	12.0 in in S 7.6 9.60	Bottom Bars Top Bars Bars Btwn Cols Bottom Bars Top Bars Bars Right of Co Bottom Bars Top Bars W 78	4.0 4.0 5.0 4.0 1#2 4.0 4.0 4.0	4 4 4 4	Provided 0.80 0.80 1.0 0.80 0.80 0.80 H k k-1 k k-1	Req'd 0.540 in^2 0.0 in^2 0.0 in^2 0.70 in^2 it
Between Columns Distance Right of Column #2 Total Footing Length Footing Width Footing Thickness Rebar Center to Concrete Edge Rebar Center to Concrete Edge Applied Loads Applied @ Left Column Axial Load Downward Moment (+CW) Shear (+X) Applied @ Right Column Axial Load Downward Moment (+CW) Shear (+X) Overburden	= 4 $= 4$ $= 4$ $= 4$ $= 6$ $= 6$ $= 6$ $= 6$ $= 2$	2.0 ft .250 ft 9.50 ft 2.50 ft 10.0 in 2.241	Sq. Dim. Height = 3 = 3 <u>Lr</u>	Col #1 = 12.0 = .0 in .0 in L	12.0 in in S 7.6 9.60	Bottom Bars Top Bars Bars Btwn Cols Bottom Bars Top Bars Bars Right of Co Bottom Bars Top Bars W 78	4.0 4.0 5.0 4.0 4.0 4.0 4.0 4.0 4.0	4 4 4 4 4	Provided 0.80 0.80 1.0 0.80 0.80 0.80 H k k-1 k k-1	Req'd 0.540 in^2 0.0 in^2 0.0 in^2 0.70 in^2 it

LIC# : KW-06014743, Build:20.23.05.25

FROELICH CONSULTING ENGINEERS

Project File: Kitchen Slab.ec6

(c) ENERCALC INC 1983-2023

DESCRIPTION: Kitchen Thickened Slab

DESIGN SUMM	IARY			Design OK
Factor of Safety	y Item	Applied	Capacity	Governing Load Combination
PASS No OTM	Overturning	0.0 k-ft	0.0 k-ft	No OTM
PASS No Sliding	Sliding	0.0 k	2.380 k	No Sliding
PASS No Uplift	Uplift	0.0 k	0.0 k	No Uplift
Utilization Ratio	o Item	Applied	Capacity	Governing Load Combination
PASS 0.8623	Soil Bearing	1.293 ksf	1.50 ksf	+D+S
PASS 0.5804	1-way Shear - Col #1	43.531 psi	75.0 psi	+1.20D+1.60S
PASS 0.5981	1-way Shear - Col #2	44.857 psi	75.0 psi	+1.20D+1.60S
PASS 0.1404	2-way Punching - Col #1	21.057 psi	150.0 psi	+1.20D+1.60S
PASS 0.1449	2-way Punching - Col #2	21.731 psi	150.0 psi	+1.20D+1.60S
PASS No Bending	Flexure - Left of Col #1 - Top	0.0 k-ft	0.0 k-ft	N/A
PASS 0.6666	Flexure - Left of Col #1 - Bottom	15.896 k-ft	23.845 k-ft	+1.20D+1.60S
PASS No Bending	Flexure - Between Cols - Top	0.0 k-ft	0.0 k-ft	N/A
PASS 0.8247	Flexure - Between Cols - Bottom	24.232 k-ft	29.382 k-ft	+1.20D+1.60S
PASS No Bending	Flexure - Right of Col #2 - Top	0.0 k-ft	0.0 k-ft	N/A
PASS 0.8518	Flexure - Right of Col #2 - Bottom	20.311 k-ft	23.845 k-ft	+1.20D+1.60S

Soil Bearing

		Eccentricity	Actual Soil Bea	Actual / Allow		
Load Combination	Total Bearing	from Ftg CL	@ Left Edge	@ Right Edge	Allowable	Ratio
D Only	7.93 k	-0.246 ft	0.39 ksf	0.28 ksf	1.50 ksf	0.257
+D+S	25.28 k	-0.341 ft	1.29 ksf	0.84 ksf	1.50 ksf	0.862
+D+0.750S	20.95 k	-0.332 ft	1.07 ksf	0.70 ksf	1.50 ksf	0.711
+0.60D	4.76 k	-0.246 ft	0.23 ksf	0.17 ksf	1.50 ksf	0.154

Overturning Stability

	Nom	nents about Left Edg	je k-ft		oments about Right Edg	k-ft
Load Combination	Overturning	Resisting	Ratio	Overturni	ng Resisting	Ratio
D Only	0.00	0.00	999.000	(0.00 0.00	999.000
+D+S	0.00	0.00	999.000	0	0.00 0.00	999.000
+D+0.750S	0.00	0.00	999.000	0	0.00 0.00	999.000
+0.60D	0.00	0.00	999.000	C	0.00 0.00	999.000
Sliding Stability						
Load Combination		Sliding Force	Resisti	ng Force	Sliding SafetyRatio	
D Only		0.00 k		2.38 k	999	
+D+S		0.00 k		7.58 k	999	
+D+0.750S		0.00 k		6.28 k	999	
+0.60D		0.00 k		1.43 k	999	

+0.60D	0.00 k
Z-Axis Footing Flexure - Maximu	Im Values for Load Combination

		Distance	Tension		Governed			
Load Combination	Mu	from left	Side	As Req'd	by	Actual As	Phi*Mn	Mu / PhiMn
	(ft-k)	(ft)		(in^2)		(in^2)	(ft-k)	
+0.60D	0.000	0.000	0	0.000	0	0.000	0.000	0.000
+0.60D	0.000	0.024	0	0.000	0	0.000	0.000	0.000
+0.60D	0.000	0.048	0	0.000	0	0.000	0.000	0.000
+1.20D+1.60S	0.011	0.071	Bottom	0.540	Min Temp %	0.800	23.845	0.000
+1.20D+1.60S	0.020	0.095	Bottom	0.540	Min Temp %	0.800	23.845	0.001
+1.20D+1.60S	0.031	0.119	Bottom	0.540	Min Temp %	0.800	23.845	0.001
+1.20D+1.60S	0.045	0.143	Bottom	0.540	Min Temp %	0.800	23.845	0.002
+1.20D+1.60S	0.061	0.166	Bottom	0.540	Min Temp %	0.800	23.845	0.003
+1.20D+1.60S	0.080	0.190	Bottom	0.540	Min Temp %	0.800	23.845	0.003
+1.20D+1.60S	0.101	0.214	Bottom	0.540	Min Temp %	0.800	23.845	0.004
+1.20D+1.60S	0.124	0.238	Bottom	0.540	Min Temp %	0.800	23.845	0.005
+1.20D+1.60S	0.151	0.261	Bottom	0.540	Min Temp %	0.800	23.845	0.006
+1.20D+1.60S	0.179	0.285	Bottom	0.540	Min Temp %	0.800	23.845	0.008
+1.20D+1.60S	0.210	0.309	Bottom	0.540	Min Temp %	0.800	23.845	0.009
+1.20D+1.60S	0.244	0.333	Bottom	0.540	Min Temp %	0.800	23.845	0.010

LIC# : KW-06014743, Build:20.23.05.25

FROELICH CONSULTING ENGINEERS

Project File: Kitchen Slab.ec6

(c) ENERCALC INC 1983-2023

DESCRIPTION: Kitchen Thickened Slab

		Distance	Tension		Governed			
Load Combination	Mu	from left	Side	As Req'd	by	Actual As	Phi*Mn	Mu / PhiMn
	(ft-k)	(ft)		(in^2)		(in^2)	(ft-k)	
+1.20D+1.60S	0.280	0.356	Bottom	0.540	Min Temp %	0.800	23.845	0.012
+1.20D+1.60S	0.318	0.380	Bottom	0.540	Min Temp %	0.800	23.845	0.013
+1.20D+1.60S	0.359 0.402	0.404 0.428	Bottom	0.540 0.540	Min Temp % Min Temp %	0.800 0.800	23.845 23.845	0.015 0.017
+1.20D+1.60S +1.20D+1.60S	0.402	0.420	Bottom Bottom	0.540	Min Temp %	0.800	23.845	0.017
+1.20D+1.60S	0.448	0.451	Bottom	0.540	Min Temp %	0.800	23.845	0.019
+1.20D+1.60S	0.547	0.499	Bottom	0.540	Min Temp %	0.800	23.845	0.021
+1.20D+1.60S	0.600	0.523	Bottom	0.540	Min Temp %	0.800	23.845	0.025
+1.20D+1.60S	0.656	0.546	Bottom	0.540	Min Temp %	0.800	23.845	0.027
+1.20D+1.60S	0.714	0.570	Bottom	0.540	Min Temp %	0.800	23.845	0.030
+1.20D+1.60S	0.774	0.594	Bottom	0.540	Min Temp %	0.800	23.845	0.032
+1.20D+1.60S	0.837	0.618	Bottom	0.540	Min Temp %	0.800	23.845	0.035
+1.20D+1.60S	0.902	0.641	Bottom	0.540	Min Temp %	0.800	23.845	0.038
+1.20D+1.60S	0.970	0.665	Bottom	0.540	Min Temp %	0.800	23.845	0.041
+1.20D+1.60S	1.040	0.689	Bottom	0.540	Min Temp %	0.800	23.845	0.044
+1.20D+1.60S	1.113	0.713	Bottom	0.540	Min Temp %	0.800	23.845	0.047
+1.20D+1.60S	1.188	0.736	Bottom	0.540	Min Temp %	0.800	23.845	0.050
+1.20D+1.60S	1.265	0.760	Bottom	0.540	Min Temp %	0.800	23.845	0.053
+1.20D+1.60S	1.345	0.784	Bottom	0.540	Min Temp % Min Temp %	0.800	23.845 23.845	0.056
+1.20D+1.60S +1.20D+1.60S	1.428 1.512	0.808 0.831	Bottom Bottom	0.540 0.540	Min Temp %	0.800 0.800	23.845	0.060 0.063
+1.20D+1.60S	1.599	0.855	Bottom	0.540	Min Temp %	0.800	23.845	0.067
+1.20D+1.60S	1.689	0.879	Bottom	0.540	Min Temp %	0.800	23.845	0.071
+1.20D+1.60S	1.781	0.903	Bottom	0.540	Min Temp %	0.800	23.845	0.075
+1.20D+1.60S	1.875	0.926	Bottom	0.540	Min Temp %	0.800	23.845	0.079
+1.20D+1.60S	1.972	0.950	Bottom	0.540	Min Temp %	0.800	23.845	0.083
+1.20D+1.60S	2.071	0.974	Bottom	0.540	Min Temp %	0.800	23.845	0.087
+1.20D+1.60S	2.173	0.998	Bottom	0.540	Min Temp %	0.800	23.845	0.091
+1.20D+1.60S	2.277	1.021	Bottom	0.540	Min Temp %	0.800	23.845	0.095
+1.20D+1.60S	2.383	1.045	Bottom	0.540	Min Temp %	0.800	23.845	0.100
+1.20D+1.60S	2.492	1.069	Bottom	0.540	Min Temp %	0.800	23.845	0.104
+1.20D+1.60S	2.603	1.093	Bottom	0.540	Min Temp %	0.800	23.845	0.109
+1.20D+1.60S	2.716	1.116	Bottom	0.540	Min Temp %	0.800	23.845	0.114
+1.20D+1.60S	2.832	1.140	Bottom	0.540	Min Temp %	0.800	23.845	0.119
+1.20D+1.60S	2.950 3.071	1.164 1.188	Bottom Bottom	0.540 0.540	Min Temp % Min Temp %	0.800 0.800	23.845 23.845	0.124 0.129
+1.20D+1.60S +1.20D+1.60S	3.194	1.100	Bottom	0.540	Min Temp %	0.800	23.845	0.129
+1.20D+1.60S	3.319	1.235	Bottom	0.540	Min Temp %	0.800	23.845	0.134
+1.20D+1.60S	3.447	1.259	Bottom	0.540	Min Temp %	0.800	23.845	0.145
+1.20D+1.60S	3.577	1.283	Bottom	0.540	Min Temp %	0.800	23.845	0.150
+1.20D+1.60S	3.710	1.306	Bottom	0.540	Min Temp %	0.800	23.845	0.156
+1.20D+1.60S	3.845	1.330	Bottom	0.540	Min Temp %	0.800	23.845	0.161
+1.20D+1.60S	3.982	1.354	Bottom	0.540	Min Temp %	0.800	23.845	0.167
+1.20D+1.60S	4.121	1.378	Bottom	0.540	Min Temp %	0.800	23.845	0.173
+1.20D+1.60S	4.263	1.401	Bottom	0.540	Min Temp %	0.800	23.845	0.179
+1.20D+1.60S	4.408	1.425	Bottom	0.540	Min Temp %	0.800	23.845	0.185
+1.20D+1.60S	4.554	1.449	Bottom	0.540	Min Temp %	0.800	23.845	0.191
+1.20D+1.60S	4.703	1.473	Bottom	0.540	Min Temp %	0.800	23.845	0.197
+1.20D+1.60S	4.855	1.496	Bottom	0.540	Min Temp %	0.800	23.845	0.204
+1.20D+1.60S	5.008	1.520	Bottom	0.540	Min Temp %	0.800	23.845	0.210
+1.20D+1.60S +1.20D+1.60S	5.164 5.323	1.544 1.568	Bottom Bottom	0.540 0.540	Min Temp % Min Temp %	0.800 0.800	23.845 23.845	0.217 0.223
+1.20D+1.60S +1.20D+1.60S	5.483	1.500	Bottom	0.540	Min Temp %	0.800	23.845	0.223
+1.20D+1.60S	5.646	1.615	Bottom	0.540	Min Temp %	0.800	23.845	0.237
+1.20D+1.60S	5.812	1.639	Bottom	0.540	Min Temp %	0.800	23.845	0.244
+1.20D+1.60S	5.979	1.663	Bottom	0.540	Min Temp %	0.800	23.845	0.251
+1.20D+1.60S	6.149	1.686	Bottom	0.540	Min Temp %	0.800	23.845	0.258
+1.20D+1.60S	6.322	1.710	Bottom	0.540	Min Temp %	0.800	23.845	0.265
+1.20D+1.60S	6.496	1.734	Bottom	0.540	Min Temp %	0.800	23.845	0.272
+1.20D+1.60S	6.673	1.758	Bottom	0.540	Min Temp %	0.800	23.845	0.280
+1.20D+1.60S	6.852	1.781	Bottom	0.540	Min Temp %	0.800	23.845	0.287
+1.20D+1.60S	7.034	1.805	Bottom	0.540	Min Temp %	0.800	23.845	0.295
+1.20D+1.60S	7.218	1.829	Bottom	0.540	Min Temp %	0.800	23.845	0.303

LIC# : KW-06014743, Build:20.23.05.25

FROELICH CONSULTING ENGINEERS

Project File: Kitchen Slab.ec6

(c) ENERCALC INC 1983-2023

DESCRIPTION: Kitchen Thickened Slab

		Distance	Tension		Governed			
Load Combination	Mu	from left	Side	As Req'd	by	Actual As	Phi*Mn	Mu / PhiMn
4.000 4.000	(ft-k)	(ft)	<u> </u>	(in^2)	M : T 0((in^2)	(ft-k)	
+1.20D+1.60S	7.404	1.853	Bottom	0.540	Min Temp %	0.800	23.845	0.311
+1.20D+1.60S	7.593	1.876	Bottom	0.540	Min Temp %	0.800	23.845	0.318
+1.20D+1.60S	7.784	1.900	Bottom	0.540	Min Temp %	0.800	23.845	0.326
+1.20D+1.60S	7.977	1.924	Bottom	0.540	Min Temp %	0.800	23.845	0.335
+1.20D+1.60S	8.172 8.370	1.948 1.971	Bottom	0.540 0.540	Min Temp % Min Temp %	0.800 0.800	23.845 23.845	0.343 0.351
+1.20D+1.60S	8.570	1.995	Bottom	0.540	Min Temp %	0.800	23.845	0.351
+1.20D+1.60S +1.20D+1.60S	8.772	2.019	Bottom Bottom	0.540	Min Temp %	0.800	23.845	0.368
+1.20D+1.60S	8.977	2.013	Bottom	0.540	Min Temp %	0.800	23.845	0.376
+1.20D+1.60S	9.184	2.045	Bottom	0.540	Min Temp %	0.800	23.845	0.385
+1.20D+1.60S	9.393	2.000	Bottom	0.540	Min Temp %	0.800	23.845	0.394
+1.20D+1.60S	9.604	2.114	Bottom	0.540	Min Temp %	0.800	23.845	0.403
+1.20D+1.60S	9.818	2.138	Bottom	0.540	Min Temp %	0.800	23.845	0.412
+1.20D+1.60S	10.034	2.161	Bottom	0.540	Min Temp %	0.800	23.845	0.421
+1.20D+1.60S	10.252	2.185	Bottom	0.540	Min Temp %	0.800	23.845	0.430
+1.20D+1.60S	10.473	2.209	Bottom	0.540	Min Temp %	0.800	23.845	0.439
+1.20D+1.60S	10.696	2.233	Bottom	0.540	Min Temp %	0.800	23.845	0.449
+1.20D+1.60S	10.921	2.256	Bottom	0.540	Min Temp %	0.800	23.845	0.458
+1.20D+1.60S	11.148	2.280	Bottom	0.540	Min Temp %	0.800	23.845	0.468
+1.20D+1.60S	11.378	2.304	Bottom	0.540	Min Temp %	0.800	23.845	0.477
+1.20D+1.60S	11.610	2.328	Bottom	0.540	Min Temp %	0.800	23.845	0.487
+1.20D+1.60S	11.844	2.351	Bottom	0.540	Min Temp %	0.800	23.845	0.497
+1.20D+1.60S	12.080	2.375	Bottom	0.540	Min Temp %	0.800	23.845	0.507
+1.20D+1.60S	12.319	2.399	Bottom	0.540	Min Temp %	0.800	23.845	0.517
+1.20D+1.60S	12.560	2.423	Bottom	0.547	Min ACI 10.5	0.800	23.845	0.527
+1.20D+1.60S	12.803	2.446	Bottom	0.558	Min ACI 10.5	0.800	23.845	0.537
+1.20D+1.60S	13.049	2.470	Bottom	0.569	Min ACI 10.5	0.800	23.845	0.547
+1.20D+1.60S	13.296	2.494	Bottom	0.580	Min ACI 10.5	0.800	23.845	0.558
+1.20D+1.60S	13.546	2.518	Bottom	0.591	Min ACI 10.5	0.800	23.845	0.568
+1.20D+1.60S	13.798	2.541	Bottom	0.602	Min ACI 10.5	0.800	23.845	0.579
+1.20D+1.60S	14.053	2.565	Bottom	0.614	Min ACI 10.5	0.800	23.845	0.589
+1.20D+1.60S	14.309	2.589	Bottom	0.625	Min ACI 10.5	0.800	23.845	0.600
+1.20D+1.60S	14.568	2.613	Bottom	0.637	Min ACI 10.5	0.800	23.845	0.611
+1.20D+1.60S	14.829	2.636	Bottom	0.649	Min ACI 10.5	0.800	23.845	0.622
+1.20D+1.60S	15.092	2.660	Bottom	0.661	Min ACI 10.5	0.800	23.845	0.633
+1.20D+1.60S	15.358	2.684	Bottom	0.673	Min ACI 10.5	0.800	23.845	0.644
+1.20D+1.60S	15.626	2.708	Bottom	0.685	Min ACI 10.5	0.800	23.845	0.655
+1.20D+1.60S	15.896	2.731	Bottom	0.697	Min ACI 10.5	0.800	23.845	0.667
+1.20D+1.60S	16.168	2.755	Bottom	0.700	Min ACI 10.5	0.800	23.845 23.845	0.678
+1.20D+1.60S	16.436	2.779	Bottom	0.700	Min ACI 10.5	0.800		0.689
+1.20D+1.60S	16.698 16.954	2.803 2.826	Bottom	0.700 0.700	Min ACI 10.5	0.800 0.800	23.845 23.845	0.700 0.711
+1.20D+1.60S +1.20D+1.60S	17.204	2.820	Bottom Bottom	0.700	Min ACI 10.5 Min ACI 10.5	0.800	23.845	0.711
+1.20D+1.60S	17.204	2.850	Bottom	0.700	Min ACI 10.5 Min ACI 10.5	0.800	23.845	0.721
+1.20D+1.60S	17.684	2.898	Bottom	0.700	Min ACI 10.5 Min ACI 10.5	0.800	23.845	0.742
+1.20D+1.60S	17.915	2.030	Bottom	0.700	Min ACI 10.5 Min ACI 10.5	0.800	23.845	0.751
+1.20D+1.60S	18.140	2.945	Bottom	0.700	Min ACI 10.5	0.800	23.845	0.761
+1.20D+1.60S	18.358	2.969	Bottom	0.700	Min ACI 10.5	0.800	23.845	0.770
+1.20D+1.60S	18.570	2.993	Bottom	0.700	Min ACI 10.5	0.800	23.845	0.779
+1.20D+1.60S	18.776	3.016	Bottom	0.700	Min ACI 10.5	0.800	23.845	0.787
+1.20D+1.60S	18.976	3.040	Bottom	0.700	Min ACI 10.5	0.800	23.845	0.796
+1.20D+1.60S	19.169	3.064	Bottom	0.700	Min ACI 10.5	0.800	23.845	0.804
+1.20D+1.60S	19.357	3.088	Bottom	0.700	Min ACI 10.5	0.800	23.845	0.812
+1.20D+1.60S	19.537	3.111	Bottom	0.700	Min ACI 10.5	0.800	23.845	0.819
+1.20D+1.60S	19.712	3.135	Bottom	0.700	Min ACI 10.5	0.800	23.845	0.827
+1.20D+1.60S	19.880	3.159	Bottom	0.700	Min ACI 10.5	0.800	23.845	0.834
+1.20D+1.60S	20.042	3.183	Bottom	0.700	Min ACI 10.5	0.800	23.845	0.841
+1.20D+1.60S	20.198	3.206	Bottom	0.700	Min ACI 10.5	0.800	23.845	0.847
+1.20D+1.60S	20.348	3.230	Bottom	0.700	Min ACI 10.5	0.800	23.845	0.853
+1.20D+1.60S	20.491	3.254	Bottom	0.700	Min ACI 10.5	1.000	29.382	0.697
+1.20D+1.60S	20.628	3.277	Bottom	0.700	Min ACI 10.5	1.000	29.382	0.702
+1.20D+1.60S	20.759	3.301	Bottom	0.700	Min ACI 10.5	1.000	29.382	0.706
+1.20D+1.60S	20.883	3.325	Bottom	0.700	Min ACI 10.5	1.000	29.382	0.711

LIC# : KW-06014743, Build:20.23.05.25

FROELICH CONSULTING ENGINEERS

Project File: Kitchen Slab.ec6

(c) ENERCALC INC 1983-2023

DESCRIPTION: Kitchen Thickened Slab

		Distance	Tension		Governed			
Load Combination	Mu (ft-k)	from left (ft)	Side	As Req'd (in^2)	by	Actual As (in^2)	Phi*Mn (ft-k)	Mu / PhiMn
1 20D 1 60C			Dattam		Min ACI 10.5		. ,	0.715
+1.20D+1.60S +1.20D+1.60S	21.001 21.113	3.349 3.372	Bottom	0.700 0.704	Min ACI 10.5 Min ACI 10.5	1.000 1.000	29.382 29.382	0.715 0.719
	21.113	3.372	Bottom	0.704	Min ACI 10.5 Min ACI 10.5	1.000	29.382	0.719
+1.20D+1.60S +1.20D+1.60S	21.210	3.420	Bottom Bottom	0.707	Min for Bending	1.000	29.382	0.722
+1.20D+1.60S +1.20D+1.60S	21.317 21.410	3.420	Bottom	0.711	Min ACI 10.5	1.000	29.382	0.720
+1.20D+1.60S	21.410	3.444	Bottom	0.717	Min ACI 10.5	1.000	29.382	0.729
+1.20D+1.60S	21.497	3.407	Bottom	0.720	Min ACI 10.5	1.000	29.382	0.732
+1.20D+1.60S	21.651	3.515	Bottom	0.720	Min ACI 10.5	1.000	29.382	0.737
+1.20D+1.60S	21.719	3.539	Bottom	0.725	Min ACI 10.5	1.000	29.382	0.739
+1.20D+1.60S	21.780	3.562	Bottom	0.727	Min ACI 10.5	1.000	29.382	0.741
+1.20D+1.60S	21.835	3.586	Bottom	0.729	Min ACI 10.5	1.000	29.382	0.743
+1.20D+1.60S	21.884	3.610	Bottom	0.731	Min ACI 10.5	1.000	29.382	0.745
+1.20D+1.60S	21.926	3.634	Bottom	0.732	Min for Bending	1.000	29.382	0.746
+1.20D+1.60S	21.962	3.657	Bottom	0.733	Min ACI 10.5	1.000	29.382	0.747
+1.20D+1.60S	21.992	3.681	Bottom	0.734	Min ACI 10.5	1.000	29.382	0.748
+1.20D+1.60S	22.016	3.705	Bottom	0.735	Min ACI 10.5	1.000	29.382	0.749
+1.20D+1.60S	22.033	3.729	Bottom	0.736	Min ACI 10.5	1.000	29.382	0.750
+1.20D+1.60S	22.043	3.752	Bottom	0.736	Min ACI 10.5	1.000	29.382	0.750
+1.20D+1.60S	22.053	3.776	Bottom	0.737	Min ACI 10.5	1.000	29.382	0.751
+1.20D+1.60S	22.065	3.800	Bottom	0.737	Min ACI 10.5	1.000	29.382	0.751
+1.20D+1.60S	22.078	3.824	Bottom	0.737	Min ACI 10.5	1.000	29.382	0.751
+1.20D+1.60S	22.094	3.847	Bottom	0.738	Min ACI 10.5	1.000	29.382	0.752
+1.20D+1.60S	22.112	3.871	Bottom	0.739	Min ACI 10.5	1.000	29.382	0.753
+1.20D+1.60S	22.132	3.895	Bottom	0.739	Min ACI 10.5	1.000	29.382	0.753
+1.20D+1.60S	22.154	3.919	Bottom	0.740	Min ACI 10.5	1.000	29.382	0.754
+1.20D+1.60S	22.179	3.942	Bottom	0.741	Min ACI 10.5	1.000	29.382	0.755
+1.20D+1.60S	22.205	3.966	Bottom	0.742	Min ACI 10.5	1.000	29.382	0.756
+1.20D+1.60S	22.233	3.990	Bottom	0.743	Min ACI 10.5	1.000	29.382	0.757
+1.20D+1.60S	22.264	4.014	Bottom	0.744	Min ACI 10.5	1.000	29.382	0.758
+1.20D+1.60S	22.296	4.037	Bottom	0.745	Min ACI 10.5	1.000	29.382	0.759
+1.20D+1.60S	22.331	4.061	Bottom	0.746	Min ACI 10.5	1.000	29.382	0.760
+1.20D+1.60S	22.368	4.085	Bottom	0.748	Min ACI 10.5	1.000	29.382	0.761
+1.20D+1.60S	22.407	4.109	Bottom	0.749	Min ACI 10.5	1.000	29.382	0.763
+1.20D+1.60S	22.448	4.132	Bottom	0.750	Min ACI 10.5	1.000	29.382	0.764
+1.20D+1.60S	22.491	4.156	Bottom	0.752	Min ACI 10.5	1.000	29.382	0.765
+1.20D+1.60S	22.536	4.180	Bottom	0.754	Min ACI 10.5	1.000	29.382	0.767
+1.20D+1.60S	22.583	4.204	Bottom	0.755	Min ACI 10.5	1.000	29.382	0.769
+1.20D+1.60S	22.632	4.227	Bottom	0.757	Min ACI 10.5	1.000	29.382	0.770
+1.20D+1.60S	22.683	4.251	Bottom	0.759	Min ACI 10.5	1.000	29.382	0.772
+1.20D+1.60S	22.737	4.275	Bottom	0.761	Min ACI 10.5	1.000	29.382	0.774
+1.20D+1.60S	22.792	4.299	Bottom	0.763	Min ACI 10.5	1.000	29.382	0.776
+1.20D+1.60S	22.849	4.322	Bottom	0.765	Min ACI 10.5	1.000	29.382	0.778
+1.20D+1.60S	22.909	4.346	Bottom	0.767	Min ACI 10.5	1.000	29.382	0.780
+1.20D+1.60S	22.970	4.370	Bottom	0.769	Min ACI 10.5	1.000	29.382	0.782
+1.20D+1.60S	23.034	4.394	Bottom	0.771	Min ACI 10.5	1.000	29.382	0.784
+1.20D+1.60S	23.100	4.417	Bottom	0.774	Min ACI 10.5	1.000	29.382	0.786
+1.20D+1.60S	23.167	4.441	Bottom	0.776	Min for Bending	1.000	29.382	0.788
+1.20D+1.60S	23.237	4.465	Bottom	0.778	Min ACI 10.5	1.000	29.382	0.791
+1.20D+1.60S +1.20D+1.60S	23.309	4.489	Bottom	0.781	Min ACI 10.5	1.000	29.382	0.793
	23.382	4.512	Bottom	0.784	Min ACI 10.5	1.000	29.382	0.796
+1.20D+1.60S	23.458	4.536	Bottom	0.786	Min ACI 10.5 Min ACI 10.5	1.000	29.382 29.382	0.798
+1.20D+1.60S	23.536	4.560	Bottom	0.789		1.000		0.801
+1.20D+1.60S +1.20D+1.60S	23.616 23.698	4.584 4.607	Bottom Bottom	0.792 0.795	Min ACI 10.5 Min ACI 10.5	1.000 1.000	29.382 29.382	0.804 0.807
	23.090	4.607		0.795	Min ACI 10.5 Min ACI 10.5		29.382	0.807
+1.20D+1.60S	23.762	4.655	Bottom	0.798	Min ACI 10.5 Min ACI 10.5	1.000 1.000	29.382	0.809
+1.20D+1.60S	23.868	4.655	Bottom	0.801			29.382	0.812
+1.20D+1.60S +1.20D+1.60S	23.956 24.046	4.679	Bottom Bottom	0.804 0.807	Min ACI 10.5 Min ACI 10.5	1.000 1.000	29.382	0.815
	24.046 24.138	4.702		0.807	Min ACI 10.5 Min ACI 10.5		29.382	0.818
+1.20D+1.60S			Bottom			1.000	29.382	
+1.20D+1.60S	24.232 24.322	4.750 4.774	Bottom	0.814 0.817	Min ACI 10.5 Min ACI 10.5	1.000	29.382	0.825 0.828
+1.20D+1.60S +1.20D+1.60S	24.322 24.404	4.774 4.797	Bottom Bottom	0.817	Min ACI 10.5 Min ACI 10.5	1.000 1.000	29.382	0.828
+1.20D+1.60S +1.20D+1.60S	24.404 24.478	4.797 4.821	Bottom	0.820	Min ACI 10.5 Min ACI 10.5	1.000	29.382	0.833
1.20011.000	27.7/0	4.021	Dottom	0.025	MILLAGE 10.5	1.000	29.002	0.000

LIC# : KW-06014743, Build:20.23.05.25

FROELICH CONSULTING ENGINEERS

Project File: Kitchen Slab.ec6

(c) ENERCALC INC 1983-2023

DESCRIPTION: Kitchen Thickened Slab

		Distance	Tension		Governed			
Load Combination	Mu	from left	Side	As Req'd	by	Actual As	Phi*Mn	Mu / PhiMn
	(ft-k)	(ft)		(in^2)		(in^2)	(ft-k)	
+1.20D+1.60S	24.543	4.845	Bottom	0.825	Min ACI 10.5	1.000	29.382	0.835
+1.20D+1.60S	24.599	4.869	Bottom	0.827	Min ACI 10.5	1.000	29.382	0.837
+1.20D+1.60S	24.646	4.892	Bottom	0.829	Min ACI 10.5	1.000	29.382	0.839
+1.20D+1.60S	24.685	4.916	Bottom	0.830	Min ACI 10.5	1.000	29.382	0.840
+1.20D+1.60S	24.715	4.940	Bottom	0.831	Min ACI 10.5	1.000	29.382	0.841
+1.20D+1.60S	24.737	4.964	Bottom	0.832	Min ACI 10.5	1.000	29.382	0.842
+1.20D+1.60S	24.750	4.987	Bottom	0.832	Min ACI 10.5	1.000	29.382	0.842
+1.20D+1.60S	24.754	5.011	Bottom	0.832	Min ACI 10.5	1.000	29.382 29.382	0.842
+1.20D+1.60S	24.750 24.737	5.035 5.059	Bottom	0.832 0.832	Min ACI 10.5 Min ACI 10.5	1.000 1.000	29.382	0.842 0.842
+1.20D+1.60S +1.20D+1.60S	24.737	5.039	Bottom Bottom	0.832	Min ACI 10.5 Min ACI 10.5	1.000	29.382	0.842
+1.20D+1.60S	24.685	5.106	Bottom	0.830	Min ACI 10.5	1.000	29.382	0.840
+1.20D+1.60S	24.646	5.130	Bottom	0.829	Min for Bending	1.000	29.382	0.839
+1.20D+1.60S	24.598	5.154	Bottom	0.827	Min ACI 10.5	1.000	29.382	0.837
+1.20D+1.60S	24.541	5.177	Bottom	0.825	Min ACI 10.5	1.000	29.382	0.835
+1.20D+1.60S	24.476	5.201	Bottom	0.823	Min ACI 10.5	1.000	29.382	0.833
+1.20D+1.60S	24.403	5.225	Bottom	0.820	Min for Bending	1.000	29.382	0.831
+1.20D+1.60S	24.320	5.249	Bottom	0.817	Min ACI 10.5	1.000	29.382	0.828
+1.20D+1.60S	24.229	5.272	Bottom	0.814	Min ACI 10.5	0.800	23.845	1.016
+1.20D+1.60S	24.129	5.296	Bottom	0.810	Min ACI 10.5	0.800	23.845	1.012
+1.20D+1.60S	24.021	5.320	Bottom	0.806	Min for Bending	0.800	23.845	1.007
+1.20D+1.60S	23.904	5.344	Bottom	0.802	Min ACI 10.5	0.800	23.845	1.002
+1.20D+1.60S	23.778	5.367	Bottom	0.798	Min ACI 10.5	0.800	23.845	0.997
+1.20D+1.60S	23.643	5.391	Bottom	0.793	Min for Bending	0.800	23.845	0.992
+1.20D+1.60S	23.500	5.415	Bottom	0.788	Min ACI 10.5	0.800	23.845	0.986
+1.20D+1.60S	23.348	5.439	Bottom	0.782	Min ACI 10.5	0.800	23.845	0.979
+1.20D+1.60S +1.20D+1.60S	23.188 23.018	5.462 5.486	Bottom Bottom	0.777 0.771	Min ACI 10.5 Min ACI 10.5	0.800 0.800	23.845 23.845	0.972 0.965
+1.20D+1.60S +1.20D+1.60S	23.018	5.510	Bottom	0.764	Min ACI 10.5 Min ACI 10.5	0.800	23.845	0.965
+1.20D+1.60S	22.654	5.534	Bottom	0.758	Min ACI 10.5	0.800	23.845	0.950
+1.20D+1.60S	22.458	5.557	Bottom	0.751	Min ACI 10.5	0.800	23.845	0.942
+1.20D+1.60S	22.254	5.581	Bottom	0.744	Min ACI 10.5	0.800	23.845	0.933
+1.20D+1.60S	22.041	5.605	Bottom	0.736	Min for Bending	0.800	23.845	0.924
+1.20D+1.60S	21.820	5.629	Bottom	0.728	Min ACI 10.5	0.800	23.845	0.915
+1.20D+1.60S	21.589	5.652	Bottom	0.720	Min for Bending	0.800	23.845	0.905
+1.20D+1.60S	21.350	5.676	Bottom	0.712	Min for Bending	0.800	23.845	0.895
+1.20D+1.60S	21.103	5.700	Bottom	0.703	Min for Bending	0.800	23.845	0.885
+1.20D+1.60S	20.846	5.724	Bottom	0.700	Min ACI 10.5	0.800	23.845	0.874
+1.20D+1.60S	20.581	5.747	Bottom	0.700	Min ACI 10.5	0.800	23.845	0.863
+1.20D+1.60S	20.311	5.771	Bottom	0.700	Min ACI 10.5	0.800	23.845	0.852
+1.20D+1.60S	20.043	5.795	Bottom	0.700	Min ACI 10.5	0.800	23.845	0.841
+1.20D+1.60S	19.778	5.819	Bottom	0.700	Min ACI 10.5	0.800	23.845 23.845	0.829
+1.20D+1.60S +1.20D+1.60S	19.513 19.251	5.842 5.866	Bottom Bottom	0.700 0.700	Min ACI 10.5 Min ACI 10.5	0.800 0.800	23.845	0.818 0.807
+1.20D+1.60S	18.991	5.890	Bottom	0.700	Min ACI 10.5	0.800	23.845	0.796
+1.20D+1.60S	18.733	5.914	Bottom	0.700	Min ACI 10.5	0.800	23.845	0.786
+1.20D+1.60S	18.476	5.937	Bottom	0.700	Min ACI 10.5	0.800	23.845	0.775
+1.20D+1.60S	18.222	5.961	Bottom	0.700	Min ACI 10.5	0.800	23.845	0.764
+1.20D+1.60S	17.969	5.985	Bottom	0.700	Min ACI 10.5	0.800	23.845	0.754
+1.20D+1.60S	17.718	6.009	Bottom	0.700	Min ACI 10.5	0.800	23.845	0.743
+1.20D+1.60S	17.469	6.032	Bottom	0.700	Min ACI 10.5	0.800	23.845	0.733
+1.20D+1.60S	17.222	6.056	Bottom	0.700	Min ACI 10.5	0.800	23.845	0.722
+1.20D+1.60S	16.977	6.080	Bottom	0.700	Min ACI 10.5	0.800	23.845	0.712
+1.20D+1.60S	16.734	6.104	Bottom	0.700	Min ACI 10.5	0.800	23.845	0.702
+1.20D+1.60S	16.492	6.127	Bottom	0.700	Min ACI 10.5	0.800	23.845	0.692
+1.20D+1.60S	16.253	6.151	Bottom	0.700	Min ACI 10.5	0.800	23.845	0.682
+1.20D+1.60S	16.015	6.175	Bottom	0.700	Min ACI 10.5	0.800	23.845	0.672
+1.20D+1.60S	15.779	6.199	Bottom	0.692	Min ACI 10.5	0.800	23.845	0.662
+1.20D+1.60S	15.545	6.222	Bottom	0.681	Min ACI 10.5	0.800	23.845	0.652
+1.20D+1.60S	15.313	6.246	Bottom	0.671	Min ACI 10.5	0.800	23.845	0.642
+1.20D+1.60S	15.083	6.270	Bottom	0.660	Min ACI 10.5	0.800	23.845	0.633
+1.20D+1.60S +1.20D+1.60S	14.854 14.628	6.294 6.317	Bottom Bottom	0.650 0.640	Min ACI 10.5 Min ACI 10.5	0.800 0.800	23.845 23.845	0.623 0.613
11.20071.000	14.020	0.317	Dottom	0.040		0.000	20.040	0.013

LIC# : KW-06014743, Build:20.23.05.25

FROELICH CONSULTING ENGINEERS

Project File: Kitchen Slab.ec6

(c) ENERCALC INC 1983-2023

DESCRIPTION: Kitchen Thickened Slab

		Distance	Tension		Governed			
Load Combination	Mu (ft-k)	from left (ft)	Side	As Req'd (in^2)	by	Actual As (in^2)	Phi*Mn (ft-k)	Mu / PhiMn
+1.20D+1.60S	14.403	6.341	Bottom	0.630	Min ACI 10.5	0.800	23.845	0.604
+1.20D+1.60S	14.180	6.365	Bottom	0.620	Min ACI 10.5	0.800	23.845	0.595
+1.20D+1.60S	13.959	6.389	Bottom	0.610	Min ACI 10.5	0.800	23.845	0.585
+1.20D+1.60S	13.740	6.412	Bottom	0.600	Min ACI 10.5	0.800	23.845	0.576
+1.20D+1.60S	13.523	6.436	Bottom	0.590	Min ACI 10.5	0.800	23.845	0.567
+1.20D+1.60S	13.307	6.460	Bottom	0.580	Min ACI 10.5	0.800	23.845	0.558
+1.20D+1.60S	13.094	6.484	Bottom	0.571	Min ACI 10.5	0.800	23.845	0.549
+1.20D+1.60S +1.20D+1.60S	12.882 12.672	6.507 6.531	Bottom Bottom	0.561 0.552	Min ACI 10.5 Min ACI 10.5	0.800	23.845	0.540 0.531
+1.20D+1.60S +1.20D+1.60S	12.463	6.555	Bottom	0.552	Min ACI 10.5 Min ACI 10.5	0.800 0.800	23.845 23.845	0.523
+1.20D+1.60S	12.403	6.579	Bottom	0.542	Min Temp %	0.800	23.845	0.523
+1.20D+1.60S	12.053	6.602	Bottom	0.540	Min Temp %	0.800	23.845	0.505
+1.20D+1.60S	11.850	6.626	Bottom	0.540	Min Temp %	0.800	23.845	0.497
+1.20D+1.60S	11.649	6.650	Bottom	0.540	Min Temp %	0.800	23.845	0.489
+1.20D+1.60S	11.450	6.674	Bottom	0.540	Min Temp %	0.800	23.845	0.480
+1.20D+1.60S	11.253	6.697	Bottom	0.540	Min Temp %	0.800	23.845	0.472
+1.20D+1.60S	11.057	6.721	Bottom	0.540	Min Temp %	0.800	23.845	0.464
+1.20D+1.60S	10.863	6.745	Bottom	0.540	Min Temp %	0.800	23.845	0.456
+1.20D+1.60S	10.671	6.769	Bottom	0.540	Min Temp %	0.800	23.845	0.448
+1.20D+1.60S	10.481	6.792	Bottom	0.540	Min Temp %	0.800	23.845	0.440
+1.20D+1.60S	10.293	6.816	Bottom	0.540	Min Temp %	0.800	23.845	0.432
+1.20D+1.60S	10.107	6.840	Bottom	0.540	Min Temp %	0.800	23.845	0.424
+1.20D+1.60S	9.922	6.864	Bottom	0.540	Min Temp %	0.800	23.845	0.416
+1.20D+1.60S +1.20D+1.60S	9.739 9.558	6.887 6.911	Bottom	0.540 0.540	Min Temp %	0.800	23.845 23.845	0.408 0.401
+1.20D+1.60S +1.20D+1.60S	9.379	6.935	Bottom Bottom	0.540	Min Temp % Min Temp %	0.800 0.800	23.845	0.401
+1.20D+1.60S	9.201	6.959	Bottom	0.540	Min Temp %	0.800	23.845	0.386
+1.20D+1.60S	9.025	6.982	Bottom	0.540	Min Temp %	0.800	23.845	0.379
+1.20D+1.60S	8.851	7.006	Bottom	0.540	Min Temp %	0.800	23.845	0.371
+1.20D+1.60S	8.679	7.030	Bottom	0.540	Min Temp %	0.800	23.845	0.364
+1.20D+1.60S	8.509	7.054	Bottom	0.540	Min Temp %	0.800	23.845	0.357
+1.20D+1.60S	8.340	7.077	Bottom	0.540	Min Temp %	0.800	23.845	0.350
+1.20D+1.60S	8.173	7.101	Bottom	0.540	Min Temp %	0.800	23.845	0.343
+1.20D+1.60S	8.008	7.125	Bottom	0.540	Min Temp %	0.800	23.845	0.336
+1.20D+1.60S	7.845	7.149	Bottom	0.540	Min Temp %	0.800	23.845	0.329
+1.20D+1.60S	7.683	7.172	Bottom	0.540	Min Temp %	0.800	23.845	0.322
+1.20D+1.60S	7.523	7.196	Bottom	0.540	Min Temp %	0.800	23.845	0.316
+1.20D+1.60S +1.20D+1.60S	7.365 7.209	7.220 7.244	Bottom Bottom	0.540 0.540	Min Temp % Min Temp %	0.800 0.800	23.845 23.845	0.309 0.302
+1.20D+1.60S	7.054	7.244	Bottom	0.540	Min Temp %	0.800	23.845	0.302
+1.20D+1.60S	6.902	7.291	Bottom	0.540	Min Temp %	0.800	23.845	0.289
+1.20D+1.60S	6.750	7.315	Bottom	0.540	Min Temp %	0.800	23.845	0.283
+1.20D+1.60S	6.601	7.339	Bottom	0.540	Min Temp %	0.800	23.845	0.277
+1.20D+1.60S	6.454	7.362	Bottom	0.540	Min Temp %	0.800	23.845	0.271
+1.20D+1.60S	6.308	7.386	Bottom	0.540	Min Temp %	0.800	23.845	0.265
+1.20D+1.60S	6.164	7.410	Bottom	0.540	Min Temp %	0.800	23.845	0.258
+1.20D+1.60S	6.021	7.434	Bottom	0.540	Min Temp %	0.800	23.845	0.253
+1.20D+1.60S	5.881	7.457	Bottom	0.540	Min Temp %	0.800	23.845	0.247
+1.20D+1.60S	5.742	7.481	Bottom	0.540	Min Temp %	0.800	23.845	0.241
+1.20D+1.60S	5.605	7.505	Bottom	0.540	Min Temp %	0.800	23.845	0.235
+1.20D+1.60S	5.469	7.529	Bottom	0.540	Min Temp %	0.800	23.845	0.229
+1.20D+1.60S	5.335	7.552	Bottom	0.540	Min Temp %	0.800	23.845	0.224
+1.20D+1.60S	5.203 5.073	7.576 7.600	Bottom	0.540 0.540	Min Temp %	0.800	23.845 23.845	0.218 0.213
+1.20D+1.60S +1.20D+1.60S	4.944	7.600	Bottom Bottom	0.540	Min Temp % Min Temp %	0.800 0.800	23.845	0.213
+1.20D+1.60S +1.20D+1.60S	4.944	7.624	Bottom	0.540	Min Temp %	0.800	23.845	0.207
+1.20D+1.60S	4.692	7.671	Bottom	0.540	Min Temp %	0.800	23.845	0.202
+1.20D+1.60S	4.569	7.695	Bottom	0.540	Min Temp %	0.800	23.845	0.192
+1.20D+1.60S	4.447	7.719	Bottom	0.540	Min Temp %	0.800	23.845	0.187
+1.20D+1.60S	4.327	7.742	Bottom	0.540	Min Temp %	0.800	23.845	0.181
+1.20D+1.60S	4.209	7.766	Bottom	0.540	Min Temp %	0.800	23.845	0.177
+1.20D+1.60S	4.092	7.790	Bottom	0.540	Min Temp %	0.800	23.845	0.172
+1.20D+1.60S	3.977	7.814	Bottom	0.540	Min Temp %	0.800	23.845	0.167

Page 35 of 49

Combined Footing

LIC# : KW-06014743, Build:20.23.05.25

FROELICH CONSULTING ENGINEERS

Project File: Kitchen Slab.ec6

(c) ENERCALC INC 1983-2023

DESCRIPTION: Kitchen Thickened Slab

		Distance	Tension		Governed			
Load Combination	Mu (ft-k)	from left (ft)	Side	As Req'd (in^2)	by	Actual As (in^2)	Phi*Mn (ft-k)	Mu / PhiMn
+1.20D+1.60S	3.864	7.837	Bottom	0.540	Min Temp %	0.800	23.845	0.162
+1.20D+1.60S	3.753	7.861	Bottom	0.540	Min Temp %	0.800	23.845	0.157
+1.20D+1.60S	3.643	7.885	Bottom	0.540	Min Temp %	0.800	23.845	0.153
+1.20D+1.60S	3.534	7.909	Bottom	0.540	Min Temp %	0.800	23.845	0.148
+1.20D+1.60S	3.428	7.932	Bottom	0.540	Min Temp %	0.800	23.845	0.144
+1.20D+1.60S	3.323	7.956	Bottom	0.540	Min Temp %	0.800	23.845	0.139
+1.20D+1.60S	3.220	7.980	Bottom	0.540	Min Temp %	0.800	23.845	0.135
+1.20D+1.60S	3.119	8.004	Bottom	0.540	Min Temp %	0.800	23.845	0.131
+1.20D+1.60S	3.019	8.027	Bottom	0.540	Min Temp %	0.800	23.845	0.127
+1.20D+1.60S	2.921	8.051	Bottom	0.540	Min Temp %	0.800	23.845	0.122
+1.20D+1.60S	2.824	8.075	Bottom	0.540	Min Temp %	0.800	23.845	0.118
+1.20D+1.60S	2.729	8.099	Bottom	0.540	Min Temp %	0.800	23.845	0.114
+1.20D+1.60S	2.636	8.122	Bottom	0.540	Min Temp %	0.800	23.845	0.111
+1.20D+1.60S	2.545	8.146	Bottom	0.540	Min Temp %	0.800	23.845	0.107
+1.20D+1.60S +1.20D+1.60S	2.455 2.367	8.170 8.194	Bottom Bottom	0.540 0.540	Min Temp % Min Temp %	0.800 0.800	23.845 23.845	0.103 0.099
+1.20D+1.60S	2.281	8.217	Bottom	0.540	Min Temp %	0.800	23.845	0.099
+1.20D+1.60S	2.201	8.241	Bottom	0.540	Min Temp %	0.800	23.845	0.090
+1.20D+1.60S	2.130	8.265	Bottom	0.540	Min Temp %	0.800	23.845	0.089
+1.20D+1.60S	2.031	8.289	Bottom	0.540	Min Temp %	0.800	23.845	0.085
+1.20D+1.60S	1.951	8.312	Bottom	0.540	Min Temp %	0.800	23.845	0.082
+1.20D+1.60S	1.873	8.336	Bottom	0.540	Min Temp %	0.800	23.845	0.079
+1.20D+1.60S	1.796	8.360	Bottom	0.540	Min Temp %	0.800	23.845	0.075
+1.20D+1.60S	1.721	8.384	Bottom	0.540	Min Temp %	0.800	23.845	0.072
+1.20D+1.60S	1.648	8.407	Bottom	0.540	Min Temp %	0.800	23.845	0.069
+1.20D+1.60S	1.576	8.431	Bottom	0.540	Min Temp %	0.800	23.845	0.066
+1.20D+1.60S	1.506	8.455	Bottom	0.540	Min Temp %	0.800	23.845	0.063
+1.20D+1.60S	1.438	8.479	Bottom	0.540	Min Temp %	0.800	23.845	0.060
+1.20D+1.60S	1.371	8.502	Bottom	0.540	Min Temp %	0.800	23.845	0.057
+1.20D+1.60S	1.306	8.526	Bottom	0.540	Min Temp %	0.800	23.845	0.055
+1.20D+1.60S	1.242	8.550	Bottom	0.540	Min Temp %	0.800	23.845	0.052
+1.20D+1.60S	1.180	8.574	Bottom	0.540	Min Temp %	0.800	23.845	0.049
+1.20D+1.60S	1.120	8.597	Bottom	0.540	Min Temp %	0.800	23.845	0.047
+1.20D+1.60S	1.061	8.621	Bottom	0.540	Min Temp %	0.800	23.845	0.045
+1.20D+1.60S	1.004	8.645	Bottom	0.540	Min Temp %	0.800	23.845	0.042
+1.20D+1.60S	0.949	8.669	Bottom	0.540	Min Temp %	0.800	23.845	0.040
+1.20D+1.60S +1.20D+1.60S	0.895 0.842	8.692 8.716	Bottom Bottom	0.540 0.540	Min Temp % Min Temp %	0.800 0.800	23.845 23.845	0.038 0.035
+1.20D+1.60S	0.792	8.740	Bottom	0.540	Min Temp %	0.800	23.845	0.033
+1.20D+1.60S	0.732	8.764	Bottom	0.540	Min Temp %	0.800	23.845	0.033
+1.20D+1.60S	0.695	8.787	Bottom	0.540	Min Temp %	0.800	23.845	0.029
+1.20D+1.60S	0.649	8.811	Bottom	0.540	Min Temp %	0.800	23.845	0.020
+1.20D+1.60S	0.605	8.835	Bottom	0.540	Min Temp %	0.800	23.845	0.025
+1.20D+1.60S	0.562	8.859	Bottom	0.540	Min Temp %	0.800	23.845	0.024
+1.20D+1.60S	0.521	8.882	Bottom	0.540	Min Temp %	0.800	23.845	0.022
+1.20D+1.60S	0.481	8.906	Bottom	0.540	Min Temp %	0.800	23.845	0.020
+1.20D+1.60S	0.443	8.930	Bottom	0.540	Min Temp %	0.800	23.845	0.019
+1.20D+1.60S	0.407	8.954	Bottom	0.540	Min Temp %	0.800	23.845	0.017
+1.20D+1.60S	0.372	8.977	Bottom	0.540	Min Temp %	0.800	23.845	0.016
+1.20D+1.60S	0.339	9.001	Bottom	0.540	Min Temp %	0.800	23.845	0.014
+1.20D+1.60S	0.307	9.025	Bottom	0.540	Min Temp %	0.800	23.845	0.013
+1.20D+1.60S	0.277	9.049	Bottom	0.540	Min Temp %	0.800	23.845	0.012
+1.20D+1.60S	0.249	9.072	Bottom	0.540	Min Temp %	0.800	23.845	0.010
+1.20D+1.60S	0.222	9.096	Bottom	0.540	Min Temp %	0.800	23.845	0.009
+1.20D+1.60S	0.196	9.120	Bottom	0.540	Min Temp %	0.800	23.845	0.008
+1.20D+1.60S	0.172	9.144	Bottom	0.540	Min Temp %	0.800	23.845	0.007
+1.20D+1.60S	0.150	9.167	Bottom	0.540	Min Temp %	0.800	23.845	0.006
+1.20D+1.60S	0.129	9.191	Bottom	0.540	Min Temp %	0.800	23.845	0.005
+1.20D+1.60S	0.110	9.215	Bottom	0.540	Min Temp %	0.800	23.845	0.005
+1.20D+1.60S	0.093	9.239	Bottom	0.540	Min Temp %	0.800	23.845	0.004
+1.20D+1.60S	0.076	9.262	Bottom	0.540	Min Temp %	0.800	23.845	0.003
+1.20D+1.60S +1.20D+1.60S	0.062 0.049	9.286 9.310	Bottom	0.540 0.540	Min Temp %	0.800	23.845	0.003 0.002
T1.200T1.003	0.049	9.010	Bottom	0.040	Min Temp %	0.800	23.845	0.002

LIC# : KW-06014743, Build:20.23.05.25

FROELICH CONSULTING ENGINEERS

Project File: Kitchen Slab.ec6

(c) ENERCALC INC 1983-2023

DESCRIPTION: Kitchen Thickened Slab

		Distance	Tension		Governed			
Load Combination	Mu	from left	Side	As Req'd	by	Actual As	Phi*Mn	Mu / PhiMn
	(ft-k)	(ft)		(in^2)		(in^2)	(ft-k)	
+1.20D+1.60S	0.037	9.334	Bottom	0.540	Min Temp %	0.800	23.845	0.002
+1.20D+1.60S	0.027	9.357	Bottom	0.540	Min Temp %	0.800	23.845	0.001
+1.20D+1.60S	0.019	9.381	Bottom	0.540	Min Temp %	0.800	23.845	0.001
+1.20D+1.60S	0.012	9.405	Bottom	0.540	Min Temp %	0.800	23.845	0.001
+1.20D+1.60S	0.000	9.429	0	0.000	0	0.000	0.000	0.000
+1.20D+1.60S	0.000	9.452	0	0.000	0	0.000	0.000	0.000
+1.20D+1.60S	0.000	9.476	0	0.000	0	0.000	0.000	0.000
+1.20D+1.60S	0.000	9.500	0	0.000	0	0.000	0.000	0.000
One Way Shear					Punching \$	Shear		
Load Combination	Phi Vn	vu @	Col #1	vu @ Col #2	Phi Vn	vu @ Co	l#1 v	u @ Col #2
+1.40D	75.00 ps	i 9.	11 psi	9.39 psi	150.00 ps	i 4.42p	si	4.56 psi
+1.20D	75.00 ps	i 7.	81 psi	8.05 psi	150.00 ps	i 3.79p	si	3.91 psi
+1.20D+0.50S	75.00 ps	i 18.	97 psi	19.55 psi	150.00 ps	i 9.19p	si	9.48 psi
+1.20D+1.60S	75.00 ps	i 43.	53 psi	44.86 psi	150.00 ps	i 21.06p	si	21.73 psi
+1.20D+0.70S	75.00 ps	i 23.	44 psi	24.15 psi	150.00 ps	i 11.35 p	si	11.71 psi
+0.90D	75.00 ps	i 5.	86 psi	6.04 psi	150.00 ps	i 2.84p	si	2.93 psi

Client: Project: Project #: Date: By: Trout Creek SDA Trout Creek SDA School 24-B101 4/29/2024 HNI

WIND FORCE CALCULATION - MWFRS

ASCE 7-16 SECTION 27.2 DIRECTIONAL PROCEDURE

Basic Wind Speeds

3 Second Gust $V_{3s} =$	105	mph
Wind Directionality Factor $K_d =$	0.85	
Wind Exposure Category =	В	

Building Parameters

Horizontal Dimension of Bldg =	96	ft
Horizontal Dimension of Bldg =	64	ft
Mean Roof Height h =	19.67	ft
Highest Roof Level $h_n =$	27.83	ft
Ground Elevation, $z_g =$	200	ft
Approximate Fundamental Period $T_a =$	0.24	sec

Fundamental Frequency f =

Topographic Effects

Hill Height H =	0	ft					
Length of $1/2$ hill height $L_h =$	1000	ft					
Dist. From Crest to Bldg. $x =$	100	ft					
Height Above Local Grade z =	15	ft					
Horizontal Attenuation Factor m =	1.5						
Height Attenuation Factor g =	3						
Shape Factor $K1/(H/Lh) =$	1.3						
Output - Topographic Multipliers $K_1 =$							
	$K_2 =$						
	V -						

 $K_3 = 0.96$

Topographic Factor $K_{zt} = 1.00$

 Table 26.6-1 (page 266)

 Section 26.7.3
 page 266

Long Dimension of Building Short Dimension of Building Ref. Figure 27.3-1 (page 275)

Ground elevation above sea level (ft) Eq. 12.8-7 (page 102)

Hz > 1 Hz Therefore Rigid

4.1

0.00 0.93 Figure 26.8-1 (page 267) Figure 26.8-1 (page 267)

Gust Effects					
Integral Length Scale Factor ℓ =	= 320 ft	t	Table 26.11	-1 (page 269))
Integral Length Scale	_				
nominal height of boundary \mathbf{z}_{g} =	= 1200		Table 26.11	-1 (page 269))
3-s gust exponent α̃ =	= 7.00		Table 26.11	-1 (page 269))
Turbulence Intensity Factor c =	= 0.30		Table 26.11	-1 (page 269))
Power Law Exponent \in =	= 0.33		Table 26.11	-1 (page 269))
Minimum Height z _{min} =	= 30 ft	t	Table 26.11	-1 (page 269))
Integral Length Scale of Tu	rbulence $L_z =$	310	ft	4.0	
Output - Background Respor	ise Factor Q =	0.86			
Intensity of T	urbulence I _z =	0.30			
Gust Effe	ect Factor G =	0.84	- Gust Effec	t Factor nee	d not exceed 0.85
			(ASCE7-16	26.11.1)	page 269
Ground Elevation Factor					
Ground Elevation Factor, K _e =	= 0.99		Table 26.9-1	l (page 268)	
Valagity Prossura					
<u>Velocity Pressure</u>	\mathbf{x} \mathbf{x} \mathbf{x}^2 (1)	1. (6.2)			
$q_z = 0.00256K_zK$	$_{zt}\mathbf{K}_{d}\mathbf{K}_{e}\mathbf{V}$ (I	b/ft ²)			
Pressure Coefficients					
Length to Widt	h Ratio L/B =	0.67	(Worst Case	e L/B)	
Height to Leng	th Ratio $h/L =$	0.20	(h/L Worst o	case roof rat	io)
Roof Pitch =	= 6 :	12 =	26.57	deg	
Velocity Pressure Exposure C	oefficients K_h ((see below)	Table 26.10	-1 (page 268	3)
External Pressure C	oefficients C _p	(see below)	Figure 27.3-	1 (page 275)
Direction C _p		Height (ft)	K _h	q _z (psf)	Velocity
Windward 0.80		15	0.57	13.7	Pressure
Leeward -0.50		20	0.62	14.9	Output q _z
Roof Windward 0.30		25	0.67	15.8	1 12
Roof Leeward -0.60		30	0.70	16.7	
		40	0.76	18.1	
		50	0.81	19.3	
		60	0.85	20.3	
		70	0.89	21.3	
		80	0.93	22.1	
		90	0.96	22.8	
		100	0.99	23.5	
		120			
		120	1.04	24.8	
	h =	120	0.62	24.8 14.8	$q_{\rm h}$

UNFAC'	TORED WI	ND PRESSURE		16 psf min per Section 27.1.5 (Walls)				
<u>Design V</u>	Vind Pressu	res <u>p (psf) - G(</u>	C _{pi} =(-)		8 psf min pe	r Section 27.	1.5 (Roof)	
Intern	al Pressure C	Coefficient $GC_{pi} =$	-0.18	Table 26.13-1	(page 271)	<u>Wall</u>	<u>Roof Horiz</u>	
			s (normal to R	oof Surface)				
	Direction -	Windward	Leeward	Roof WW	Roof LW	WW+LW	RWW+RLW	
Height	15	11.9	-3.6			16.0		
ft	20	12.7	-3.6			16.3		
	25	13.4	-3.6			17.0		
	30	13.9	-3.6			17.5		
	40	14.9	-3.6			18.5		
	50	15.7	-3.6			19.3		
	60	16.4	-3.6			20.0		
	70	17.0	-3.6			20.6		
	80	17.6	-3.6			21.2		
	90	18.1	-3.6			21.7		
	100	18.6	-3.6			22.2		
	120	19.4	-3.6			23.0		
	19.67	12.7	-3.6	6.4	-4.8	16.2	11.25	
Parapet	0	20.5	-13.7			34.2		

 0
 20.5
 -13.7

 Design Load Case 1 Controls - By Inspection
 Parapet Loading

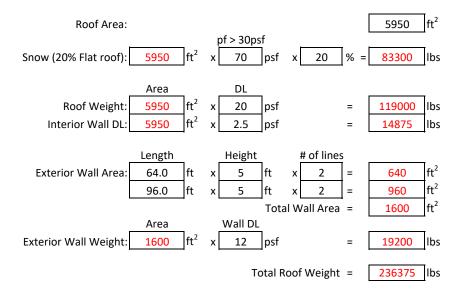
Figure 27.3-8 (page 283) Section 27.3.4 (page 274)

UNFACTORED WIND PRESSURE

<u>Design Wind Pressures</u> $p (psf) - GC_{ni} = (+)$. . . 16 psf min per Section 27.1.5 (Walls) 8 psf min per Section 27.1.5 (Roof)

Interr	nal Pressure (Coefficient $GC_{pi} =$	0.18	Table 26.13-1	(page 271)	<u>Wall</u>	Roof Horiz
		*	Roof Effects	s (normal to R	oof Surface)		
	Direction -	Windward	Leeward	Roof WW	Roof LW	WW+LW	RWW+RLW
Height	15	6.6	-8.9			16.0	
ft	20	7.4	-8.9			16.3	
	25	8.0	-8.9			17.0	
	30	8.6	-8.9			17.5	
	40	9.6	-8.9			18.5	
	50	10.4	-8.9			19.3	
	60	11.1	-8.9			20.0	
	70	11.7	-8.9			20.6	
	80	12.3	-8.9			21.2	
	90	12.8	-8.9			21.7	
	100	13.2	-8.9			22.2	
	120	14.1	-8.9			23.0	
	19.67	7.3	-8.9	1.1	-10.2	16.2	11.25
Parapet	0	20.5	-13.7			34.2	

Design Load Case 1 Controls - By Inspection Parapet Loading


Figure 27.3-8 (page 283) Section 27.3.4 (page 274)

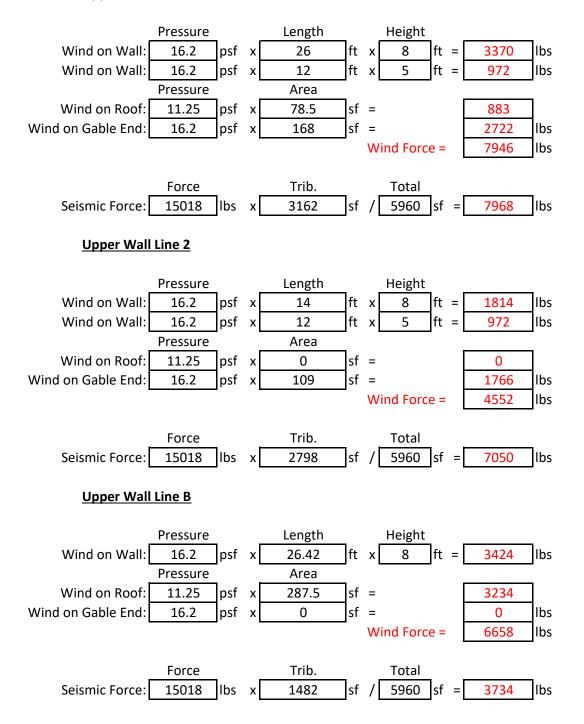
client: Trout Creek SDA project: Trout Creek SDA School job number: 24-B101 date: 4/29/2024 by: HNI

SEISMIC WEIGHTS:

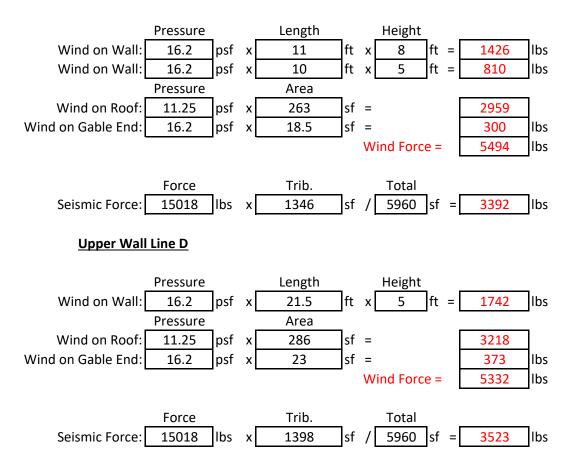
Roof:

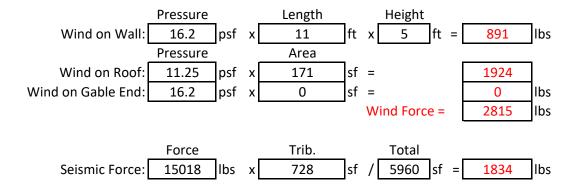
client: Trout Creek SDA project: Trout Creek SDA School job number: 24-B101 date: 4/29/2024 by: HNI

SEISMIC FORCE CALCULATION (ASCE7-16)


Building Parameters:		-			
Risk Category =	I	ļ			
Importance I =	1.00	_		•	
Soil Site Class =	D	Default ASC	E7-16 11.4.3		
Response Modification Coefficient, R =		_			
Height of Structure, h _n =	27.83	ft			
Spectral Acceleration Devenuetors.					
Spectral Acceleration Parameters:	1	-			
Site Class B Short-Period Spectral Response Acceleration, $S_S =$	0.424	g		(OSHPD Maps)	
Site Class B 1-Second Spectral Response Acceleration, $S_1 =$	0.136	g		(OSHPD Maps)	
Short-Period Sidte Coefficient, $F_a =$	1.461	ļ		(OSHPD Maps)	
Minimum Short-Period Site Coefficient Site Class D (Default), $F_a =$	1.200			ASCE7-16 11.4.4	
Long-Period Site Coefficent, F_v =	2.327	<u> </u>			
$(S_{MS}=F_a*S_s)$ Long-Peiod, Calculated S_{MS} to Determine SDC, $S_{MS}=$	0.619	g			
$(S_{MS} \ge S_{M1})$ Therefore Controlling, $S_{MS} =$	0.619	g		Section 1613.2.3	
(S _{M1} =F _v *S ₁) Short-Period, S _{M1} =	0.316	g			
$(S_{DS}=(2/3)S_{MS})$ Design Spectral Acceleration Short-Period, $S_{DS}=$	0.413	g			
$(S_{D1}=(2/3)S_{M1})$ Design Spectral Acceleration Long-Period, $S_{D1} =$	0.211	g			
Seismic Design Category =	D	(Controlling	From Table 11	.6-1&2)	
Approximate Fundamental Period & Building Periods:					
Approximate Fundamental Period Parameters, Ct =	0.02	T			
Approximate Fundamental Period Parameters, x =	0.75	1			
$(T_a = C_t x h_n^x)$ Approximate Period, $T_a =$	0.242	sec			
Coefficeient for upper limit on calculated period, $C_u =$	1.489	1			
$(T = T_a^*C_u)$ Upper Limit Period, T =	0.361	sec			
Fundamental Period, T =	0.242	sec			
$(T_{s} = S_{D1}/S_{DS}) T_{s} =$	0.511	sec			
Long-Period Transition Periods, $T_L =$	16	sec			
		1			
Verify Exception(s) SDC D-F Only:					
1. Structures on Site Class E, $S_S \ge 1.0$:		NA		1	
2. Table values are applicable for, $T \le 1.5T_s$:	0.242	<	0.766	Use Eq. 12.8-2 Fo	r Cs
3. Structures on Site Class E, S1 \ge 0.2:	0.242	NA	0.700	030 Eq. 12.0-210	103
				J	
Seismic Response Coefficient, Cs:					
$(C_s = S_{DS}/(R/Ie))$ Seismic Response Coefficient, $C_s =$	0.064	(T ≤ 1.5T _S)		Eq. 12.8-2	
$(C_s = S_{DS}/(14K))$ (Costante response obtained, $C_s = (C_s = S_{DS}/(14K))$) Upper Limit, $C_s = (C_s = S_{DS}/(14K))$	0.004	$(T \le T_L)$		Ly. 12.0-2	
$(C_s = 0.0044S_{Ds}I_e \ge 0.01)$ Lower Limit, $C_s = (C_s = 0.0044S_{Ds}I_e \ge 0.01)$ Lower Limit, $C_s = 0.0044S_{Ds}I_e \ge 0.01$		(1 ≤ 1 _L) ≥ 0.01			
$(C_{\rm S} - 0.00443_{\rm DSIe} \ge 0.01)$ Lower Limit $C_{\rm S} =$	0.016	20.01			
Base Shear, V:					
Weight, W =	236375	lbs			
$(V = C_s^*W)$ Unfactored Seismic Base Shear, V =	15018	lbs			
Martinet Distribution of Octower 1					
Vertical Distribution of Seismic Force:					
		101	1	hxWx/∑hxWx	<u> </u>
level x	hx	Wx	hxWx		

level x	hx	Wx	hxWx	hxWx/∑hxWx	Fx
Roof	10.00	236375	2363750	1.000	15018
Totals:		236375	2363750		15018


client: Trout Creek SDA project: Trout Creek SDA School job number: 24-B101 date: 4/29/2024 by: HNI


Upper Wall Line 1

Upper Wall Line C

Upper Wall Line E

	Roof Level			Wi	ind Overturning l	Load Combina	tions						Seis	mic Overturning Load Co	ombinations
Client: Trout Creek SDA				Unfactored w/o DL:	1	W							Unfactored v	v/ o - no DL:	ρE
Project: Trout Creek SDA School	Resisting D	ead load		ASD:		0.6D + 0.6	W						Unfactored w	v/ Ω - no DL:	ΩE
Proj. #: 24-B101	Roof DL	: 20 psf		LRFD:		0.9D + W	/						ASD w	v/o Ω : (0.6 - 0.14	4SDS)D + 0.7pE
Date: 4/29/24	Wall DL:	8 psf											ASD v	w/Ω: (0.6 - 0.14	4SDS)D + 0.7ΩE
By: HNI	Floor DL	0 psf											ASD w/	Ω/0.75 : ((0.6 - 0.14S	DS)D + 0.7ΩE)/0.75
·			*Refe	rence ASCE7-16 Tab	le 12.2-1 for val	ue of the over	strength fa	ctor, Ω. **F	ootnote b: Where the tabu	lated value of the			LRFD v	w/oΩ: (0.9 - 0.2	SDS)D + 1.0pE
			overs	trength factor, Ω, is g	reater than or eq	ual to 2.5, Ω is	permitted	to be reduc	ced by subtracting the val	ue of 0.5 for			LRFD	w/Ω: (0.9 - 0.2	SDS)D + 1.0ΩE
				ures with flexible diap					, ,					S _{DS} :	0.413 g
			-			_					-				_
Segment Geometry	Loading	DL Trib. L			Wind Desi		r			Seismic Desig	gn Output	r		Redundancy	
L Lt hu h/L Ratio Factor	Wind Seismic		rib Lo		Uplift	ASD Uplift	Unit Load	Sheathing		Uplift	ASD Uplift (lbs)	Unit Load	Sheathing	ρ: 1.3	**Ω: 2.5
(ft) (ft) (ft) (2L/h)	(lbs) (lbs)		ft) (in)	Load Combination	(lbs)	(lbs)		Design (plf)	Load Combination	(lbs)	,	(plf)	Design (plf)	Hardware	
	(Unfactored w/o p)	(Unfactor	ed)		(Ref Load Comb.)	(ASD)	(A.	SD)		(Ref Load Comb.)	(ASD w/ ρ)	(/	1 <i>SD)</i>	Hold Downs	Nailing
Wall Line 1															
24.00 33.25 16.00 0.7 1.00	7946 7968		.0 0.00	()	3824	-1795	143	143	(Unfactored w/ p - no DL)	4984	-206	218	218	HDs Not Req'd	
9.25 33.25 10.00 1.1 1.00	7946 7968	16.0 10.0 0	0.0 0.00	(Unfactored w/o DL)	2390	324	143	143	(Unfactored w/ ρ - no DL)	3115	1178	218	218	HDU4 w/ PAB5	6/12
Segment Geometry	Loading	DL Trib. L	ength	T	Wind Desi	gn Output				Seismic Desig	n Output			Redundancy	Factor
L Lt hu h/L Ratio Factor	Wind Seismic		rib Lo		Uplift	ASD Uplift	Unit Load	Sheathing		Uplift	í í	Unit Load	Sheathing	ρ: 1.3	**Ω : 2.5
(ft) (ft) (ft) $(2L/h)$	(lbs) (lbs)		ft) (in)	Load Combination	(lbs)	(lbs)	(plf)	Design (plf)	Load Combination	(lbs)	ASD Uplift (lbs)	(plf)	Design (plf)	Hardware	
(1) (1) (1) (221)	(Unfactored w/o o)		/ ()		(Ref Load Comb.)	(ASD)	ų į	SD)		(Ref Load Comb.)	(ASD w/p)	<u> </u>	(SD)	Hold Downs	Nailing
Wall Line 2	(0.9.000.00	(0.9.000			(iter Loud Como.)	(100)		/		(Ref Loud Combi)	(100 m p)				
36.00 36.00 10.00 0.3 1.00	4552 7050	11.0 10.0 0	.0 0.00	(Unfactored w/o DL)	1264	-2481	76	76	(Unfactored w/ p - no DL)	2546	-1146	178	178	HDs Not Req'd	6/12
		DI T I I		1	N2 15 1	0					0.4.4				P
Segment Geometry	Loading	DL Trib. L			Wind Desig			a		Seismic Desig	gn Output		01 11	Redundancy	
L Lt hu h/L Ratio Factor	Wind Seismic		rib Lo	Load Combination	Uplift (lbs)	ASD Uplift (lbs)	Unit Load	Sheathing	Load Combination	Uplift (lbs)	ASD Uplift (lbs)	Unit Load	Sheathing	ρ: 1.3 Hardware	**Ω: 2.5
(ft) (ft) (ft) (2L/h)	(lbs) (lbs)		ft) (in)	Load Combination	. ,	(IDS)		Design (plf)	Load Combination	. ,		(plf)	Design (plf)		
W-U I =- D	(Unfactored w/o p)	(Unfactor	ed)		(Ref Load Comb.)	(ASD)	(A.	SD)		(Ref Load Comb.)	(ASD w/ ρ)	(*	1 <i>SD</i>)	Hold Downs	Nailing
Wall Line B				(Unfratand w/a DL)					(Unfectored w/ a me DI)						
33.00 49.00 16.00 0.5 1.00	6558 3734	6.0 16.0 0	0.0 0.00	(2141	-1170	80	80	(Unfactored w/ ρ - no DL) (Unfactored w/ ρ - no DL)	1585	-1109	69	69	HDs Not Req'd	6/12
		6.0 16.0 0		((Unfactored w/ ρ - no DL) (Unfactored w/ ρ - no DL)						
33.00 49.00 16.00 0.5 1.00	6558 3734	6.0 16.0 0	0.0 0.00 0.0 0.00	(2141	-1170 -157	80	80		1585	-1109 -174	69	69	HDs Not Req'd	6/12 6/12 Factor
33.00 49.00 16.00 0.5 1.00 16.00 49.00 10.00 0.6 1.00 Segment Geometry L Lt hu h/L Ratio Factor	6558 3734 6558 3734	6.0 16.0 0 6.0 10.0 0 DL Trib. L Rtrib Wtrib F	0.0 0.00 0.0 0.00 ength trib Lo	(Unfactored w/o DL)	2141 1338 Wind Desig Uplift	-1170 -157 gn Output ASD Uplift	80	80	(Unfactored w/ p - no DL)	1585 991 Seismic Desig	-1109 -174 gn Output	69	69	HDs Not Req'd HDs Not Req'd Redundancy ρ: 1.3	6/12 6/12 Factor **Ω: 2.5
33.00 49.00 16.00 0.5 1.00 16.00 49.00 10.00 0.6 1.00 Segment Geometry	6558 3734 6558 3734 Loading Wind Vind Seismic (lbs) (lbs)	6.0 16.0 0 6.0 10.0 0 DL Trib. L Rtrib Wtrib (ft) (ft) (ft)	0.0 0.00 0.0 0.00 ength trib Lo ff) (in)	(2141 1338 Wind Design Uplift (lbs)	-1170 -157 gn Output ASD Uplift (lbs)	80 80 Unit Load (plf)	80 80 Sheathing Design (plf)		1585 991 Seismic Desig Uplift (lbs)	-1109 -174 an Output ASD Uplift (lbs)	69 69 Unit Load (plf)	69 69 Sheathing Design (plf)	HDs Not Req'd HDs Not Req'd Redundancy ρ: 1.3 Hardware	6/12 6/12 Factor **Ω: 2.5 Used
33.00 49.00 16.00 0.5 1.00 16.00 49.00 10.00 0.6 1.00 Segment Geometry L Lt hu h/L Ratio Factor (ft) (ft) (ft) (ft) L CL/L)	6558 3734 6558 3734 Loading Wind Seismic	6.0 16.0 0 6.0 10.0 0 DL Trib. L Rtrib Wtrib (ft) (ft) (ft)	0.0 0.00 0.0 0.00 ength trib Lo ff) (in)	(Unfactored w/o DL)	2141 1338 Wind Desig Uplift	-1170 -157 gn Output ASD Uplift	80 80 Unit Load (plf)	80 80 Sheathing	(Unfactored w/ p - no DL)	1585 991 Seismic Desig	-1109 -174 an Output ASD Uplift (lbs)	69 69 Unit Load (plf)	69 69 Sheathing	HDs Not Req'd HDs Not Req'd Redundancy ρ: 1.3	6/12 6/12 Factor **Ω: 2.5
33.00 49.00 16.00 0.5 1.00 16.00 49.00 10.00 0.6 1.00 Segment Geometry L Lt hu h/L Ratio Factor (ff) (ff) (ff) (2L/h) Wall Line C C C	6558 3734 6558 3734 Loading Wind Wind Seismic (lbs) (Unfactored w/o ρ) (Unfactored w/o ρ)	6.0 16.0 0 6.0 10.0 0 DL Trib. L Rtrib Wtrib F (ft) (ft) (ft) (Unfactor)	0.0 0.00 0.0 0.00 ength trib Lo ft) (in) ed)	(Unfactored w/o DL)	2141 1338 Wind Desig Uplift (Ibs) (Ref Load Comb.)	-1170 -157 gn Output ASD Uplift (lbs) (ASD)	80 80 Unit Load (plf) (A.	80 80 Sheathing Design (plf) SD)	(Unfactored w/ ρ - no DL) Load Combination	1585 991 Seismic Desig Uplift (Ibs) (Ref Load Comb.)	-1109 -174 an Output ASD Uplift (lbs) (ASD w/p)	69 69 Unit Load (plf)	69 69 Sheathing Design (plf) 4SD)	HDs Not Req'd HDs Not Req'd Redundancy p: 1.3 Hardware Hold Downs	6/12 6/12 Factor **Ω: 2.5 Used Nailing
33.00 49.00 16.00 0.5 1.00 16.00 49.00 10.00 0.6 1.00 Segment Geometry L Lt hu h/L Ratio Factor (2L/h) (ft) (ft) (ft) (2L/h) (2L/h) Wall Line C 16.00 1.00 1.00 1.00	6558 3734 6558 3734 6558 3734 Loading Wind Seismic (Ibs) (Ibs) (Unfactored w/o p) 5494 3392	6.0 16.0 0 6.0 10.0 0 DL Trib. L Rtrib Wtrib F (ft) (ft) (ft) (ft) (ft) (ft) 6.0 16.0 0	0.0 0.00 0.0 0.00 ength trib trib Lo ft) (in) ed) 0.0	(Unfactored w/o DL)	2141 1338 Wind Desi Uplift (lbs) (Ref Load Comb.) 3300	-1170 -157 gn Output (Ibs) (ASD) (ASD) 751	80 80 Unit Load (plf) (A. 120	80 80 Sheathing Design (plf) SD) 120	(Unfactored w/ρ - no DL) Load Combination (Unfactored w/ρ - no DL)	1585 991 Seismic Desig Uplift (Ibs) (Ref Load Comb.) 2648	-1109 -174 an Output ASD Uplift (lbs) (ASD w/ρ) 743	69 69 Unit Load (plf) (2 112	69 69 Sheathing Design (plf) (SD) 112	HDs Not Req'd HDs Not Req'd Redundancy p: 1.3 Hardware Hold Downs HDU4 w/ PAB5	6/12 6/12 Factor **Ω : 2.5 Used Nailing 6/12
33.00 49.00 16.00 0.5 1.00 16.00 49.00 10.00 0.6 1.00 Segment Geometry L Lt hu h/L Ratio Factor (ff) (ff) (ff) (2L/h) Wall Line C C C	6558 3734 6558 3734 Loading Wind Wind Seismic (lbs) (Unfactored w/o ρ) (Unfactored w/o ρ)	6.0 16.0 0 6.0 10.0 0 DL Trib. L Rtrib Wtrib F (ft) (ft) (ft) (ft) (ft) (ft) 6.0 16.0 0	0.0 0.00 0.0 0.00 ength trib Lo ft) (in) ed)	(Unfactored w/o DL)	2141 1338 Wind Desig Uplift (Ibs) (Ref Load Comb.)	-1170 -157 gn Output ASD Uplift (lbs) (ASD)	80 80 Unit Load (plf) (A.	80 80 Sheathing Design (plf) SD)	(Unfactored w/ ρ - no DL) Load Combination	1585 991 Seismic Desig Uplift (Ibs) (Ref Load Comb.)	-1109 -174 an Output ASD Uplift (lbs) (ASD w/p)	69 69 Unit Load (plf)	69 69 Sheathing Design (plf) 4SD)	HDs Not Req'd HDs Not Req'd Redundancy p: 1.3 Hardware Hold Downs	6/12 6/12 Factor **Ω : 2.5 Used Nailing 6/12
33.00 49.00 16.00 0.5 1.00 16.00 49.00 10.00 0.6 1.00 Segment Geometry L Lt hu h/L Ratio Factor (ft) (ft) (ft) (ft) h/L Ratio Factor (2L/h) Wall Line C 1.00 1.00 1.00 15.00 27.50 16.00 1.4 1.00	6558 3734 6558 3734 Loading Wind Wind Seismic (Ibs) (Ibs) (Unfactored w/o p) 5494 5494 3392	6.0 16.0 0 6.0 10.0 0 DL Trib. L Rtrib Wtrib F (ft) (ft) (ft) (ft) (ft) (ft) 6.0 16.0 0 6.0 16.0 0 6.0 16.0 0	0.0 0.00 0.0 0.00 ength	(Unfactored w/o DL)	2141 1338 Wind Desi Uplift (lbs) (Ref Load Comb.) 3300 3342	-1170 -157 gn Output ASD Uplift (lbs) (ASD) 751 1111	80 80 Unit Load (plf) (A. 120	80 80 Sheathing Design (plf) SD) 120	(Unfactored w/ρ - no DL) Load Combination (Unfactored w/ρ - no DL)	1585 991 Seismic Desig Uplift (Ibs) (Ref Load Comb.) 2648 2682	-1109 -174 an Output ASD Uplift (lbs) (ASD w/p) 743 1069	69 69 Unit Load (plf) (2 112	69 69 Sheathing Design (plf) (SD) 112	HDs Not Req'd HDs Not Req'd Redundancy p: 1.3 Hardware Hold Downs HDU4 w/ PAB5 HDU4 w/ PAB5	6/12 6/12 Factor **Ω: 2.5 Used Nailing 6/12 6/12
33.00 49.00 16.00 0.5 1.00 16.00 49.00 10.00 0.6 1.00 Segment Geometry L Lt hu h/L Ratio Factor (ft) (ft) h/h Natio Factor (2L/h) Wall Line C 16.00 1.0 1.00 11.50 27.50 16.00 1.4 1.00 Segment Geometry	6558 3734 6558 3734 Loading Wind Wind Scismic (Ibs) (Ibs) (Ibs) (Ibs) 5494 3392 5494 3392 Loading Loading	6.0 16.0 (6.0 10.0 (DL Trib. L Rtrib Wtrib F (R) (R) ((R) (R) ((B) (((B) (((B) (((B) (((D) ((DL Trib. L DL Trib. L (.0 0.00 .0 0.00 ength rib rib Lo ft) (in) ed) .0 .0 6.00 .0 6.00 .0 6.00	(Unfactored w/o DL)	2141 1338 Wind Desi Uplift (lbs) (Ref Load Comb.) 3300 3342 Wind Desi	-1170 -157 gn Output ASD Uplift (Ibs) (ASD) 751 1111 gn Output	80 80 Unit Load (plf) (A. 120 120	80 80 Sheathing Design (plf) SD) 120 120	(Unfactored w/ρ - no DL) Load Combination (Unfactored w/ρ - no DL)	1585 991 Seismic Desig Uplift (Ibs) (Ref Load Comb.) 2648 2682 Seismic Desig	-1109 -174 an Output ASD Uplift (lbs) (ASD w/p) 743 1069 an Output	69 69 Unit Load (plf) (/ 112 112	69 69 Sheathing Design (plf) (SD) 112 112	HDs Not Req'd HDs Not Req'd Redundancy p: 1.3 Hardware Hold Downs HDU4 w/ PAB5 HDU4 w/ PAB5 Redundancy	6/12 6/12 6/12 Factor **Ω: 2.5 Used Nailing 6/12 Factor
33.00 49.00 16.00 0.5 1.00 16.00 49.00 10.00 0.6 1.00 Segment Geometry L Lt hu h/L Ratio Factor (2L/h) Wall Line C 16.00 1.0 1.00 11.50 27.50 16.00 1.4 1.00 Segment Geometry L Lt hu h/L Ratio Factor	6558 3734 6558 3734 Loading Wind Seismic (lbs) (lbs) (lbs) (lbs) (lbs) 5494 3392 Loading Wind Seismic Seismic	6.0 16.0 (6.0 10.0 (DL Trib. L Ruib Wirib F (Å) ((Unfactor) 6.0 16.0 ((b) (Unfactor) (6.0 16.0 (6.0 16.0 (6.0 16.0 (DL Trib. L Rtrib Wirib F	.0 0.00 .0 0.00 ength .0 irib Lo ft) (in) ed/ .0 .0 6.00 ength .0 irib Lo .0 6.00 ength .0 rib Lo	(Unfactored w/o DL) Load Combination (Unfactored w/o DL) (Unfactored w/o DL)	2141 1338 Wind Desi (lbs) (Ref Load Comb.) 3300 3342 Wind Desi Uplift	-1170 -157 gn Output ASD Uplift (Ibs) (ASD) 751 1111 gn Output ASD Uplift	80 80 Unit Load (plf) (A. 120 120 Unit Load	80 80 Sheathing Design (plf) SD) 120 Sheathing	(Unfactored w/ ρ - no DL) Load Combination (Unfactored w/ ρ - no DL) (Unfactored w/ ρ - no DL)	1585 991 Seismic Desig Uplift ((bs) (Ref Load Comb.) 2648 2682 Seismic Desig Uplift	-1109 -174 an Output ASD Uplift (lbs) (ASD w/p) 743 1069	69 69 Unit Load (plf) (/ 112 112 Unit Load	69 69 Sheathing Design (plf) (SD) 112 112 Sheathing	HDs Not Req'd HDs Not Req'd Redundancy ρ: 1.3 Hardware Hold Downs HDU4 w/ PAB5 HDU4 w/ PAB5 Redundancy ρ: 1.3	6/12 6/12 5 6/12 **Ω : 2.5 Used Nailing 6/12 6/12 Factor **Ω : 2.5
33.00 49.00 16.00 0.5 1.00 16.00 49.00 10.00 0.6 1.00 Segment Geometry L Lt hu h/L Ratio Factor (ft) (ft) h/h Natio Factor (2L/h) Wall Line C 16.00 1.0 1.00 11.50 27.50 16.00 1.4 1.00 Segment Geometry	6558 3734 6558 3734 6558 3734 Loading (lbs) (lbs) (lbs) (lbs) (lbs) 5494 3392 5494 3392 Loading Wind Seismic (lbs) (lbs) (lbs)	6.0 16.0 (6.0 10.0 (DL Trib. L Rtrib Wtrib F (ft) (ft) (ft) ((ft) (ft) (ft) ((ft) (ft) (ft) ((ft) (ft) (ft) ((ft) (ft) (ft) (ft) (ft) (ft) (ft) (ft)	.0 0.00 .0 0.00 ength .0 rrib Lo ft) (in) ed/ .0 .0 6.00 ength .0 .0 6.00 ength .0 rib Lo .0 6.00 ength .0 rib Lo ft) (in)	(Unfactored w/o DL)	2141 1338 Wind Desi Uplift ((bs) (Ref Load Comb.) 3300 3342 Wind Desi Uplift ((bs)	-1170 -157 gn Output ASD Uplift (lbs) (4SD) 751 1111 gn Output ASD Uplift (lbs)	80 80 Unit Load (plf) (A. 120 120 Unit Load (plf)	80 80 Sheathing Design (plf) SD) 120 120 Sheathing Design (plf)	(Unfactored w/ρ - no DL) Load Combination (Unfactored w/ρ - no DL)	1585 991 Seismic Desig Uplift (Ibs) (Ref Load Comb.) 2648 2648 2682 Uplift (Ibs)	-1109 -174 an Output ASD Uplift (lbs) (ASD w/p) 743 1069 an Output ASD Uplift (lbs)	69 69 (plf) (2112 112 112 Unit Load (plf)	69 69 Sheathing Design (plf) (SD) 112 112 Sheathing Design (plf)	HDs Not Req'd HDs Not Req'd Redundancy ρ: 1.3 Hardware Hold Downs HDU4 w/ PAB5 HDU4 w/ PAB5 Redundancy ρ: 1.3 Hardware	6/12 6/12 **Ω: 2.5 Used Nailing 6/12 6/12 Factor 6/12 **Ω: 2.5 Used 0.12
33.00 49.00 16.00 0.5 1.00 16.00 49.00 10.00 0.6 1.00 Segment Geometry L Lt hu h/L Ratio Factor (2L/h) Wall Line C 1.00 1.00 1.00 1.00 Segment Geometry L Lt hu h/L Ratio Factor (2L/h) Segment Geometry L Lt hu h/L Ratio Factor (6t) (ft) (ft) (ft) (ft) L Ratio Factor (2L/h)	6558 3734 6558 3734 Loading Wind Seismic (lbs) (lbs) (lbs) (lbs) (lbs) 5494 3392 Loading Wind Seismic Seismic	6.0 16.0 (6.0 10.0 (DL Trib. L Ruib Wirib F (Å) ((Unfactor) 6.0 16.0 ((b) (Unfactor) (6.0 16.0 (6.0 16.0 (6.0 16.0 (DL Trib. L Rtrib Wirib F	.0 0.00 .0 0.00 ength .0 rrib Lo ft) (in) ed/ .0 .0 6.00 ength .0 .0 6.00 ength .0 rib Lo .0 6.00 ength .0 rib Lo ft) (in)	(Unfactored w/o DL) Load Combination (Unfactored w/o DL) (Unfactored w/o DL)	2141 1338 Wind Desi (lbs) (Ref Load Comb.) 3300 3342 Wind Desi Uplift	-1170 -157 gn Output ASD Uplift (Ibs) (ASD) 751 1111 gn Output ASD Uplift	80 80 Unit Load (plf) (A. 120 120 Unit Load (plf)	80 80 Sheathing Design (plf) SD) 120 Sheathing	(Unfactored w/ ρ - no DL) Load Combination (Unfactored w/ ρ - no DL) (Unfactored w/ ρ - no DL)	1585 991 Seismic Desig Uplift ((bs) (Ref Load Comb.) 2648 2682 Seismic Desig Uplift	-1109 -174 an Output ASD Uplift (lbs) (ASD w/p) 743 1069 an Output ASD Uplift (lbs)	69 69 (plf) (2112 112 112 Unit Load (plf)	69 69 Sheathing Design (plf) (SD) 112 112 Sheathing	HDs Not Req'd HDs Not Req'd Redundancy ρ: 1.3 Hardware Hold Downs HDU4 w/ PAB5 HDU4 w/ PAB5 Redundancy ρ: 1.3	6/12 6/12 5 6/12 **Ω : 2.5 Used Nailing 6/12 6/12 Factor **Ω : 2.5
33.00 49.00 16.00 0.5 1.00 16.00 49.00 10.00 0.6 1.00 Segment Geometry L 1.0 1.00 (ft) (ft) h/L Ratio Factor (2L/h) Wall Line C 16.00 1.0 1.00 11.50 27.50 16.00 1.4 1.00 Segment Geometry L L h/L Ratio Factor (2L/h) Wall Line C 16.00 1.4 1.00 Wall Line D Wall Line D h/L Ratio Factor (2L/h)	6558 3734 6558 3734 Loading Wind Seismic (lbs) (lbs) (lbs) 5494 3392 Loading Wind Seismic (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs)	6.0 16.0 (6.0 10.0 (DL Trib. L Ruib Wirib F (ft) (ft) ((ft) (ft) (0.0 16.0 (6.0 16.0 (6.0 16.0 (0.0 16.0 (0.0 16.0 (0.0 16.0 (0.0 16.0 (0.0 16.0 (0.0 16.0 (0.0 16.0 (.0 0.00 .0 0.00 ength iii iii Lo ft) (in) edj iii rib Lo no 6.00 ength iii rib Lo ft) (in) ength Lo ft) (in) edj iiii	(Unfactored w/o DL) Load Combination (Unfactored w/o DL) (Unfactored w/o DL) Load Combination	2141 1338 Wind Desi (lbs) (Ref Load Comb.) 3300 3342 Wind Desi (lbs) (Ref Load Comb.)	-1170 -157 gn Output ASD Uplift (Ibs) (ASD) 751 1111 gn Output ASD Uplift (Ibs) (ASD)	80 80 Unit Load (plf) 120 120 Unit Load (plf) (A.	80 80 Sheathing Design (plf) SD 120 Sheathing Design (plf) SD)	(Unfactored w/ ρ - no DL) Load Combination (Unfactored w/ ρ - no DL) (Unfactored w/ ρ - no DL) Load Combination	1585 991 Seismic Desig Uplift ((bs) (Ref Load Comb.) 2648 2682 Seismic Desig Uplift ((bs) (Ref Load Comb.)	-1109 -174 an Output ASD Uplift (lbs) (ASD w/ p) 743 1069 an Output ASD Uplift (lbs) (ASD w/ p)	69 69 Unit Load (plf) 112 112 Unit Load (plf) 6	69 69 Sheathing Design (plf) 112 112 Sheathing Design (plf) (SD)	HDs Not Req'd HDs Not Req'd Redundancy ρ: 1.3 Hardware Hold Downs HDU4 w/ PAB5 HDU4 w/ PAB5 Redundancy ρ: 1.3 Hardware Hold Downs	6/12 6/12 6/12 **Ω: 2.5 Used Nailing **Ω: 2.5 Factor **Ω: 2.5 Used Nailing Nailing
33.00 49.00 16.00 0.5 1.00 16.00 49.00 10.00 0.6 1.00 Segment Geometry L Lt hu h/L Ratio Factor (2L/h) Wall Line C 1.00 1.00 1.00 1.00 Segment Geometry L Lt hu h/L Ratio Factor (2L/h) Segment Geometry L Lt hu h/L Ratio Factor (6t) (ft) (ft) (ft) (ft) L Ratio Factor (2L/h)	6558 3734 6558 3734 6558 3734 Loading (lbs) (lbs) (lbs) (lbs) (lbs) 5494 3392 5494 3392 Loading Wind Seismic (lbs) (lbs) (lbs)	6.0 16.0 (6.0 10.0 (DL Trib. L Ruib Wirib F (ft) (ft) ((ft) (ft) (0.0 16.0 (6.0 16.0 (6.0 16.0 (0.0 16.0 (0.0 16.0 (0.0 16.0 (0.0 16.0 (0.0 16.0 (0.0 16.0 (0.0 16.0 (.0 0.00 .0 0.00 ength iii iii Lo ft) (in) edj iii rib Lo no 6.00 ength iii rib Lo ft) (in) ength Lo ft) (in) edj iiii	(Unfactored w/o DL) Load Combination (Unfactored w/o DL) (Unfactored w/o DL)	2141 1338 Wind Desi (lbs) (Ref Load Comb.) 3300 3342 Wind Desi (lbs) (Ref Load Comb.)	-1170 -157 gn Output ASD Uplift (lbs) (4SD) 751 1111 gn Output ASD Uplift (lbs)	80 80 Unit Load (plf) (A. 120 120 Unit Load (plf)	80 80 Sheathing Design (plf) SD) 120 120 Sheathing Design (plf)	(Unfactored w/ ρ - no DL) Load Combination (Unfactored w/ ρ - no DL) (Unfactored w/ ρ - no DL)	1585 991 Seismic Desig Uplift (Ibs) (Ref Load Comb.) 2648 2648 2682 Uplift (Ibs)	-1109 -174 an Output ASD Uplift (lbs) (ASD w/p) 743 1069 an Output ASD Uplift (lbs)	69 69 (plf) (2112 112 112 Unit Load (plf)	69 69 Sheathing Design (plf) (SD) 112 112 Sheathing Design (plf)	HDs Not Req'd HDs Not Req'd Redundancy ρ: 1.3 Hardware Hold Downs HDU4 w/ PAB5 HDU4 w/ PAB5 Redundancy ρ: 1.3 Hardware	6/12 6/12 6/12 **Ω: 2.5 Used Nailing **Ω: 2.5 Factor **Ω: 2.5 Used Nailing Nailing
33.00 49.00 16.00 0.5 1.00 16.00 49.00 10.00 0.6 1.00 Segment Geometry L 1.0 1.00 (ft) (ft) h/L Ratio Factor (2L/h) Wall Line C 16.00 1.0 1.00 11.50 27.50 16.00 1.4 1.00 Segment Geometry L L h/L Ratio Factor (2L/h) Wall Line C 16.00 1.4 1.00 Wall Line D Wall Line D h/L Ratio Factor (2L/h)	6558 3734 6558 3734 Loading Wind Seismic (lbs) (lbs) (lbs) 5494 3392 Loading Wind Seismic (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs)	6.0 16.0 (6.0 10.0 (DL Trib. L Ruib Wirib F (ft) (ft) ((ft) (ft) (0.0 16.0 (6.0 16.0 (6.0 16.0 (0.0 16.0 (0.0 16.0 (0.0 16.0 (0.0 16.0 (0.0 16.0 (0.0 16.0 (0.0 16.0 (.0 0.00 .0 0.00 ength rib rib Lo ft) (in) .0 6.00 .0 6.00 ength rib rib Lo ft) (in) edj .0	(Unfactored w/o DL) Load Combination (Unfactored w/o DL) (Unfactored w/o DL) Load Combination	2141 1338 Wind Desi (lbs) (Ref Load Comb.) 3300 3342 Wind Desi (lbs) (Ref Load Comb.)	-1170 -157 gn Output ASD Uplift (lbs) (ASD) 751 1111 gn Output ASD Uplift (lbs) (ASD) 331	80 80 Unit Load (plf) 120 120 Unit Load (plf) (A.	80 80 Sheathing Design (plf) SD 120 Sheathing Design (plf) SD)	(Unfactored w/ ρ - no DL) Load Combination (Unfactored w/ ρ - no DL) (Unfactored w/ ρ - no DL) Load Combination	1585 991 Seismic Desig Uplift ((bs) (Ref Load Comb.) 2648 2682 Seismic Desig Uplift ((bs) (Ref Load Comb.)	-1109 -174 an Output ASD Uplift (lbs) (ASD w/ρ) 743 1069 an Output ASD Uplift (lbs) (ASD w/ρ) 452	69 69 Unit Load (plf) 112 112 Unit Load (plf) 6	69 69 Sheathing Design (plf) 112 112 Sheathing Design (plf) (SD)	HDs Not Req'd HDs Not Req'd Redundancy ρ: 1.3 Hardware Hold Downs HDU4 w/ PAB5 HDU4 w/ PAB5 Redundancy ρ: 1.3 Hardware Hold Downs	6/12 6/12 6/12 Factor **Ω : 2.5 Used Nailing **Ω : 2.5 Used Nailing **Ω : 2.5 Used 6/12 6/12 6/12 6/12 6/12 6/12
33.00 49.00 16.00 0.5 1.00 16.00 49.00 10.00 0.6 1.00 L Lt hu h/L Ratio Factor (2L/h) Wall Line C 10.00 1.0 1.00 11.50 27.50 16.00 1.4 1.00 Segment Geometry L Lt hu h/L Ratio Factor (2L/h) Wall Line C 16.00 1.0 1.00 1.00 1.00 11.50 27.50 16.00 1.4 1.00 1.00 Wall Line D L Lt hu h/L Ratio Factor (2L/h) (2L/h) Wall Line D 20.50 10.00 0.5 1.00 1.00	6558 3734 6558 3734 6558 3734 Loading (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) 5494 3392 5494 3392 Loading (lbs) (lbs) 3523	6.0 16.0 (6.0 10.0 (DL Trib. L Ruib Wirib F (ft) (ft) ((Cunfactorn 6.0 16.0 (DL Trib. L Ruib Wirib F (ft) (ft) (ft) ((DL Trib. L Ruib Wirib F (ft) (ft) (ft) ((OL Trib. L Ruib Unfactorn 6.0 10.0 0 DL Trib. L DL Trib. L DL Trib. L	.0 0.00 .0 0.00 ength rib rib Lo ft) (in) .0 6.00 .0 6.00 ength rib rib Lo ft) (in) edj .0	(Unfactored w/o DL) Load Combination (Unfactored w/o DL) (Unfactored w/o DL) Load Combination	2141 1338 Wind Desi Uplift (lbs) (Ref Load Comb.) 3300 3342 Wind Desi Uplift (lbs) (Ref Load Comb.) 2601	-1170 -157 gn Output ASD Uplift (lbs) (ASD) 751 1111 gn Output ASD Uplift (lbs) (ASD) 331	80 80 Unit Load (plf) 120 120 Unit Load (plf) (A.	80 80 Sheathing Design (plf) SD 120 Sheathing Design (plf) SD)	(Unfactored w/ ρ - no DL) Load Combination (Unfactored w/ ρ - no DL) (Unfactored w/ ρ - no DL) Load Combination	1585 991 Seismic Desig Uplift (lbs) (Ref Load Comb.) 2648 2682 Seismic Desig Uplift (lbs) (Ref Load Comb.) 2234	-1109 -174 an Output ASD Uplift (lbs) (ASD w/ ρ) 743 1069 an Output ASD Uplift (lbs) (ASD w/ ρ) 452 an Output	69 69 Unit Load (plf) 112 112 Unit Load (plf) 6	69 69 Sheathing Design (plf) 112 112 Sheathing Design (plf) (SD)	HDs Not Req'd HDs Not Req'd Redundancy ρ: 1.3 Hardware Hold Downs HDU4 w/ PABS Redundancy ρ: 1.3 Hardware Hold Downs HDs Not Req'd	6/12 6/12 6/12 Factor **Ω : 2.5 Used Nailing **Ω : 2.5 Used Nailing **Ω : 2.5 Used 6/12 6/12 6/12 6/12 6/12 6/12
33.00 49.00 16.00 0.5 1.00 16.00 49.00 10.00 0.6 1.00 Segment Geometry L Lt hu h/L Ratio Factor (ft) (ft) (ft) L L Wall Line C 1.00 1.00 1.00 11.50 27.50 16.00 1.4 1.00 Segment Geometry L Lt hu h/L Ratio Factor (ft) (ft) (ft) L 1.00 Segment Geometry L Lt hu h/L Ratio Factor (ft) (ft) (ft) L 1.00 Wall Line D 20.50 10.00 0.5 1.00 Segment Geometry 1.00 1.00 1.00 1.00	6558 3734 6558 3734 6558 3734 Loading Wind (lbs) (lbs) (lbs) (lbs) 5494 3392 Loading Wind Vind Seismic (lbs) (lbs) (lbs) (lbs) 5322 3523 Loading Loading	6.0 16.0 (6.0 10.0 (DL Trib. L Rtrib Wirb F (ft) (ft) (ft) (ft) (ft) (ft) (ft) (ft) DL Trib. L Rtrib Virb Rtrib Wirb F (ft) (ft) (ft) (ft) (ft) (ft) (ft) (ft) (ft) (ft) (ft) (ft) (ft) (ft) (ft) (ft) (ft) (ft) L Trib. L Rtrib Wirb F Ktrib	.0 0.00 .0 0.00 ength rib rib Lo ft) (in) .0 6.00 .0 6.00 ength rib .0 6.00 ength (in) .0 6.00 ength .00 .0 0.00 ength .0	(Unfactored w/o DL) Load Combination (Unfactored w/o DL) (Unfactored w/o DL) Load Combination	2141 1338 Wind Desi Uplift ((lbs) 3300 3342 Wind Desi (Ds) (Ref Load Comb.) 2601 Wind Desi	-1170 -157 gn Output ASD Uplift (Ibs) (ASD) 751 1111 gn Output ASD Uplift (Ibs) (ASD) 331 gn Output	80 80 (plf) (A. 120 120 Unit Load (plf) (A. 156	80 80 Sheathing Design (plf) 5D) 120 120 Sheathing Design (plf) 5D) 156	(Unfactored w/ ρ - no DL) Load Combination (Unfactored w/ ρ - no DL) (Unfactored w/ ρ - no DL) Load Combination	1585 991 Seismic Desig Uplift (lbs) (Ref Load Comb.) 2648 2682 Seismic Desig Uplift (lbs) (Ref Load Comb.) 2234 Seismic Desig	-1109 -174 an Output ASD Uplift (lbs) (ASD w/ρ) 743 1069 an Output ASD Uplift (lbs) (ASD w/ρ) 452	69 69 69 112 112 112 112 112 112 115 0	69 69 Sheathing Design (plf) (SD) 112 112 Sheathing Design (plf) (SD) 156	HDs Not Req'd HDs Not Req'd Redundancy P: 1.3 Hardware Hold Downs HDU4 w/ PAB5 HDU4 w/ PAB5 Redundancy P: 1.3 Hardware Hold Downs HDs Not Req'd Redundancy Redundancy	6/12 6/12 6/12 Factor **Ω : 2.5 Used Nailing **Ω : 2.5 Used Nailing 6/12 Factor **Ω : 2.5 Used Nailing 6/12 Factor **Ω : 2.5 Factor **Ω : 2.5
33.00 49.00 16.00 0.5 1.00 16.00 49.00 10.00 0.6 1.00 Kegment Geometry L L hu h/L Ratio Factor (2L/h) Wall Line C 16.00 1.0 1.00 1.0 1.00 11.50 27.50 16.00 1.4 1.00 Vall Line C 1.0 1.00 1.0 U L hu h/L Ratio Factor (2L/h) Wall Line C 1.00 1.0 1.00 Segment Geometry L L hu h/L Q0.50 20.50 10.00 0.5 1.00 Segment Geometry L L hu h/L L L hu h/L 1.00	6558 3734 6558 3734 6558 3734 Loading Wind Seismic (lbs) (lbs) (lbs) (lbs) J494 3392 Loading Wind Seismic (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) 5494 3392 Loading Wind Seismic (lbs) (lbs) 5332 3523 Loading Wind Seismic	6.0 16.0 (6.0 10.0 (DL Trib. L Rtrib Wtrib ((fi) (fi) (.0 0.00 .0 0.00 ength .0 rib Lo ft) (in) edge .0 ength .0 ength .0 ength .0 ft) (in) ength .0 .0 0.00	(Unfactored w/o DL) Load Combination (Unfactored w/o DL) (Unfactored w/o DL) Load Combination (Unfactored w/o DL)	2141 1338 Wind Desi Uplift (lbs) (Ref Load Comb.) 3300 3342 Wind Desi Uplift (lbs) (Ref Load Comb.) 2601 Wind Desi Uplift	-1170 -157 gn Output ASD Uplift (lbs) (ASD) 751 1111 asD Uplift (lbs) (ASD) 331 gn Output ASD Uplift	80 80 80 90 (plf) (A) 120 120 120 120 120 120 Unit Load (plf) (A) 156 Unit Load (plf)	80 80 Sheathing Design (plf) SD Sheathing Design (plf) SD 120 Sheathing SD Sheathing	(Unfactored w/ ρ - no DL) Load Combination (Unfactored w/ ρ - no DL) (Unfactored w/ ρ - no DL) Load Combination (Unfactored w/ ρ - no DL)	1585 991 Seismic Desig Uplift ((bs) (Ref Load Comb.) (Ref Load Comb.) (Ref Load Comb.) (Ref Load Comb.) 2234 Seismic Desig Uplift	-1109 -174 an Output ASD Uplift (lbs) (ASD w/p) 743 1069 an Output ASD Uplift (lbs) (ASD w/p) 452 an Output ASD Uplift (lbs)	69 69 69 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	69 69 Sheathing Design (plf) (SD) 112 112 Sheathing Design (plf) (SD) 156 Sheathing	HDs Not Req'd HDs Not Req'd Redundancy ρ: 1.3 Hardware Hold Downs HDU4 w/ PAB5 HDU4 w/ PAB5 HDU4 w/ PAB5 Hardware Hold Downs HDV4 w/ PAB5 Hardware Hold Downs HDs Not Req'd Redundancy P T	6/12 6/12 6/12 Factor **Ω : 2.5 Used Nailing **Ω : 2.5 Used Nailing 6/12 Factor **Ω : 2.5 Used Nailing 6/12 Factor **Ω : 2.5 Factor **Ω : 2.5
33.00 49.00 16.00 0.5 1.00 16.00 49.00 10.00 0.6 1.00 Kegment Geometry L L hu h/L Ratio Factor (2L/h) Wall Line C 16.00 1.0 1.00 1.0 1.00 11.50 27.50 16.00 1.4 1.00 Vall Line C 1.0 1.00 1.0 U L hu h/L Ratio Factor (2L/h) Wall Line C 1.00 1.0 1.00 Segment Geometry L L hu h/L Q0.50 20.50 10.00 0.5 1.00 Segment Geometry L L hu h/L L L hu h/L 1.00	6558 3734 6558 3734 6558 3734 Loading (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) 5494 3392 5494 3392 5494 3392 (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) Loading Wind Seismic (lbs) (lbs) (lbs) (lbs) (lbs)	6.0 16.0 (6.0 10.0 (DL Trib. L Rtrib Wrib (Rtrib Wrib (((fi) (fi) ((fi) (fi) ((fi) (fi) ((Interstand) (((fi) (fi) (.0 0.00 .0 0.00 ength .0 rib Lo ft) (in) edge .0 ength .0 ength .0 ength .0 ft) (in) ength .0 .0 0.00	(Unfactored w/o DL) Load Combination (Unfactored w/o DL) (Unfactored w/o DL) Load Combination (Unfactored w/o DL)	2141 1338 Wind Desi Uplift (bs) (Ref Load Comb.) 3300 3342 Wind Desi Uplift (lbs) (Ref Load Comb.) 2601 Wind Desi Uplift (lbs)	-1170 -157 gn Output ASD Uplift (lbs) (4SD) 751 1111 gn Output ASD Uplift (lbs) (ASD) 331 gn Output ASD Uplift (lbs)	80 80 80 90 (plf) (A) 120 120 120 120 120 120 Unit Load (plf) (A) 156 Unit Load (plf)	80 80 Sheathing Design (plf) SD 120 120 Sheathing Design (plf) SD Sbeathing Design (plf)	(Unfactored w/ ρ - no DL) Load Combination (Unfactored w/ ρ - no DL) (Unfactored w/ ρ - no DL) Load Combination (Unfactored w/ ρ - no DL)	1585 991 Seismic Desig Uplift (lbs) (Ref Load Comb.) 2648 2648 2682 Uplift (lbs) (Ref Load Comb.) 2234 Scismic Desig Uplift (lbs) (Ref Load Comb.)	-1109 -174 an Output ASD Uplift (lbs) (ASD w/p) 743 1069 an Output ASD Uplift (lbs) (ASD w/p) 452 an Output ASD Uplift (lbs)	69 69 69 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	69 69 Sheathing Design (plf) (SD) 112 112 112 Sheathing Design (plf) (SD) 156	HDs Not Req'd HDs Not Req'd Redundancy ρ: 1.3 Hardware Hold Downs HDU4 w/ PAB5 Redundancy ρ: 1.3 Hardware Hold Downs HDS Not Req'd Redundancy β: HDs Not Req'd Redundancy ρ: 1.3 HDs Not Req'd Redundancy ρ: 1.3 Hardware Hardware	6/12 6/12 6/12 Factor **Ω : 2.5 Used Nailing 6/12 Factor **Ω : 2.5 Used Nailing 6/12 Factor **Ω : 2.5 Used Nailing 6/12 Factor **Ω : 2.5 Used
33.00 49.00 16.00 0.5 1.00 16.00 49.00 10.00 0.6 1.00 Segment Geometry L L hu h/L Ratio Factor (2L/h) Wall Line C 10.00 1.0 1.00 1.00 11.50 27.50 16.00 1.4 1.00 Segment Geometry L L hu h/L Ratio Factor (2L/h) Wall Line C 16.00 1.4 1.00 1.00 1.10 Wall Line D 20.50 20.50 10.00 0.5 1.00 Segment Geometry L L hu h/L Ratio Factor (2L/h) Wall Line D 20.50 10.00 0.5 1.00 1.00 Segment Geometry L L L hu h/L Ratio Factor (2L/h) (rit) (rit) (rit) h/L Ratio Factor (2L/h) (2L/h)	6558 3734 6558 3734 6558 3734 Loading (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) 5494 3392 5494 3392 5494 3392 (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) Loading Wind Seismic (lbs) (lbs) (lbs) (lbs) (lbs)	6.0 16.0 (6.0 10.0 (DL Trib. L Ruib Wirib F (ft) (ft) ((ft) (ft) ((ft) (ft) (DL Trib. L Rtrib Wirib F (ft) (ft) (OL Trib. L Rtrib Wirib F (ft) (ft) (OL Trib. L Rtrib Wirib F (ft) (ft) ((ft) (ft) ((ft) (ft) (.0 0.00 .0 0.00 ength .0 rib Lo ft) (in) edge .0 ength .0 ength .0 ength .0 ft) (in) ength .0 .0 0.00	(Unfactored w/o DL) Load Combination (Unfactored w/o DL) (Unfactored w/o DL) Load Combination (Unfactored w/o DL)	2141 1338 Wind Desi Uplift (bs) (Ref Load Comb.) 3300 3342 Wind Desi Uplift (lbs) (Ref Load Comb.) 2601 Wind Desi Uplift (lbs)	-1170 -157 gn Output ASD Uplift (lbs) (4SD) 751 1111 gn Output ASD Uplift (lbs) (ASD) 331 gn Output ASD Uplift (lbs)	80 80 80 90 (plf) (A) 120 120 120 120 120 120 Unit Load (plf) (A) 156 Unit Load (plf)	80 80 Sheathing Design (plf) SD 120 120 Sheathing Design (plf) SD Sbeathing Design (plf)	(Unfactored w/ ρ - no DL) Load Combination (Unfactored w/ ρ - no DL) (Unfactored w/ ρ - no DL) Load Combination (Unfactored w/ ρ - no DL)	1585 991 Seismic Desig Uplift (lbs) (Ref Load Comb.) 2648 2648 2682 Uplift (lbs) (Ref Load Comb.) 2234 Scismic Desig Uplift (lbs) (Ref Load Comb.)	-1109 -174 an Output ASD Uplift (lbs) (ASD w/p) 743 1069 an Output ASD Uplift (lbs) (ASD w/p) 452 an Output ASD Uplift (lbs)	69 69 69 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	69 69 Sheathing Design (plf) (SD) 112 112 112 Sheathing Design (plf) (SD) 156	HDs Not Req'd HDs Not Req'd Redundancy ρ: 1.3 Hardware Hold Downs HDU4 w/ PAB5 Redundancy ρ: 1.3 Hardware Hold Downs HDS Not Req'd Redundancy β: HDs Not Req'd Redundancy ρ: 1.3 HDs Not Req'd Redundancy ρ: 1.3 Hardware Hardware	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	6558 3734 6558 3734 6558 3734 Loading (lbs) (lbs) (lbs) (lbs) (lbs) 5494 3392 Loading Wind Vind Seismic (lbs) (lbs) (lbs) (lbs) 5332 3523 Loading Wind Seismic (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs)	6.0 16.0 (6.0 10.0 (DL Trib. L Rurib Wirib F (fi) (fi) ((Unfactor 6.0 16.0 (DL Trib. L Rurib Kirib F (fi) (fi) (((DL Trib. L Rurib Wirib F (fi) (fi) (fi) ((DL Trib. L Rurib Wirib F (fi) (fi) (fi) ((DL Trib. L Rurib Wirib F (fi) (fi) (fi) (((fi) (fi) (fi) (((fi) (fi) ((((fi) (fi) ((((fi) (fi) ((((fii) (.0 0.00 .0 0.000 ength .0 rib Lo ft) (in) .0 6.00 ength .0 .0 0.00 ength .0 .0 .0.00 ength .0 .0 .0.00 ength .0 .0 .0.00 ength .0 .0 .0.00	(Unfactored w/o DL) Load Combination (Unfactored w/o DL) (Unfactored w/o DL) Load Combination (Unfactored w/o DL)	2141 1338 Wind Desi (lbs) (Ref Load Comb.) 3300 3342 Wind Desi Uplift (lbs) (Ref Load Comb.) 2601 Wind Desi Uplift (lbs) (Ref Load Comb.)	-1170 -157 gn Output ASD Uplift (lbs) (ASD) 751 1111 gn Output ASD Uplift (lbs) (ASD) 331 gn Output ASD Uplift (lbs) (JSD)	80 80 10nit Load (plf) 120 120 120 120 120 120 120 120	80 80 Sheathing Design (plf) SD 120 120 Sheathing Design (plf) SD 156 Sheathing Design (plf) SD	(Unfactored w/ ρ - no DL) Load Combination (Unfactored w/ ρ - no DL) (Unfactored w/ ρ - no DL) Load Combination (Unfactored w/ ρ - no DL) Load Combination	1585 991 Seismic Desig Uplift ((bs) (Ref Load Comb.) 2648 2682 Seismic Desig Uplift ((bs) (Ref Load Comb.) 2234 Seismic Desig Uplift ((bs) (Ref Load Comb.)	-1109 -174 an Output ASD Uplift (lbs) (ASD w/p) 743 1069 an Output ASD Uplift (lbs) (ASD w/p) 452 an Output ASD Uplift (lbs) (ASD W/p)	69 69 Unit Load (plf) 112 112 112 Unit Load (plf) 0 156 Unit Load (plf)	69 69 5heathing Design (plf) (SD) 112 112 Sheathing Design (plf) (SD) 156 Sheathing Design (plf)	HDs Not Req'd HDs Not Req'd Redundancy ρ : 1.3 Hardware Hold Downs HDU4 w/ PAB5 HDU4 w/ PAB5 HDU4 w/ PAB5 HDU4 w/ PAB5 Hold Downs Hold Downs HDs Not Req'd Redundancy HDs Not Req'd Redundancy P : 1.3 Hardware Hold Downs	

client: Trout Creek SDA project: Trout Creek SDA School job number: 24-B101 date: 4/29/2024 by: HNI

Diaphragm Loading Wind/Seismic:

Diaphragm Design Forces (ASCE7-16 Sec. 12.10.1.1 Eq. 12.10-1):

Level	w _{px} (lbs)	V _i (lbs)	∑ V _i (lbs)	∑w _i (lbs)	$F_{px} = ((\sum V_i) / (\sum w_i)) * w_{px}$		Force Ratio
Roof	236375	15018	15018	236375	F _{roof} =	15018	1.30

 w_{px} : Seismic weight tributary to the diaphragm at level "x".

 V_i : The design force applied to level "i", as determined for the main force resisting system (unfactored). Force Ratio: Ratio of diaphragm design force to MFRS design force, but not less than 1.0

Min & Max Diaphragm Loads:

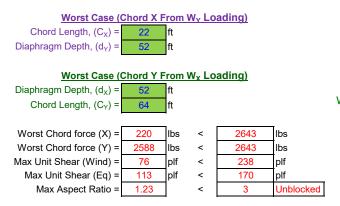
Importance Factor (I _e) = F _{p min} =	0.413 1.0 0.2*S _{DS} *I _e 0.4*S _{DS} *I _e		(Eq. 12.10-2) (Eq. 12.10-3)	
Level	F _{p min}	F _{p max}	Diaphragm Shear (Unfactored)	Diaphragm Shear (Factored)
	19525	39049	F _{roof} = 19525 lbs	F _{roof} = 13667 lbs

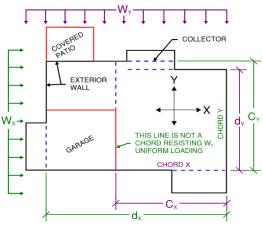
Roof Wall Line Shear Loads & Roof Diaphragm Unit shear:

	Shea	ar Wall Lii	nes 1- <i>n</i> &	Diaphragm	Unit Shea	r		ρ=	1.3
	Shear Wall Loads (1-n)	Wind Shear In Wall Line (Ibs)	Seismic Shear In Wall Line (Ibs)	Wind Shear In Wall Line (Ibs)	Seismic MFRS Shear (Ibs)	Seismic Diaphram Shear (Ibs)		Wind Unit Shear (plf)	Seismic Unit Shear (plf)
	(ff)					Factore	d (ASD)		
	1	7946	7968	4768	7251	7251	64	74	113
Shear Walls	2	4552	7050	2731	6416	6416	64	43	100
Supporting	3								
Uniform Load	4								
(W _x)	5								
	6								

	She	ear Wall L	ines A-n 8.	& Diaphragm	Unit Shear			ρ=	1.3
	Shear Wall Loads (A-n)	Wind Shear In Wall Line (Ibs)	Seismic Shear In Wall Line (Ibs)	Wind Shear In Wall Line (Ibs)	Seismic MFRS Shear (Ibs)	Seismic Diaphram Shear Dist. (lb)	Diaphragm Connection Length, L _{A-n}	Wind Unit Shear (plf)	Seismic Unit Shear (plf)
		(IDS) (IDS) <th< th=""></th<>							
	В	6558	3734	3934.8	3397.94	3398	52	76	65
Shear Walls	С	5494	3392	3296.4	3086.72	3087	52	63	59
Supporting	D	5332	3523	3199.2	3205.93	3206	52	62	62
Uniform Load	E	2815	1834	1689	1668.94	1669	52	32	32
(W _Y)									

Average Uniform Diaphragm Loads (W_x & W_y): COVERED Overall Projected Wall Width (LxT & LYT): Length $(L_{XT}) =$ 64 ft EXTERIOR WALL Length $(L_{YT}) =$ ft 52 Factored Uniform Distributed Diaphragm Design Loads: W.-COLLECTOR Uniform Wind $(W_X) =$ 144 plf Uniform Seismic (W_X) = plf Force Ratio Controls 263 Uniform Wind $(W_Y) =$ 189 plf Uniform Seismic (W_Y) = 178 plf Force Ratio Controls Double Top Plate Splice Capacity & Unit Shear Capacity:


Double Top Plate Splice Capacity:


 $\begin{array}{l} (2) - 2x6 \mbox{ DF with min over lap 4 feet total w/ (12) - 0.131"x3" face nails each side of splice 0.131"x3" nail into 1.5" side plate 97 lbs, Per NDS 2018 Table 12N \\ \mbox{Over Strength Factor, } \Omega = 1.0 \ (Sec. 12.10.1.1 \ Exception for single family residential) \\ \mbox{Double top plate splice = 118lbs(1.6)(14nails) = 2643} \ \mbox{Ibs} \end{array}$

Double Top Plate Splice Capacity:

Unblocked wood structrual panel diaphragm, 7/16 sheathing, 0.131"x2.5" nails, wind = 475plf, Seismic = 340plf, SDPWS 2021 T4.2c Max Unblocked Diaphragm Shear, Wind = 475plf/2 = 238 plf Max Unblocked Diaphragm Shear, Seismic = 340plf/2 = 170 plf

Diaphragm Design:

Diaphragm Chord & Drag Forces at Locations of Interest:

Symbols & E	quations	Uniform Diaphragm Loads				
(V) Wall Line Load (unfactored)	(A_d) Location of Interest (Drag)	(Factored ASD)				
(L_{w}) Total Length of Wall Line	(W) Uniform Diaphragm Load	Uniform Wind $(W_X) =$	144	plf		
(L_sw) Total length of Shear wall	(L_c) Length of Chord	Uniform Seismic (W _X) =	263	plf		
(<i>v</i>) Shear Wall PLF	(d_d) Depth of Diaphragm	Uniform Wind (W _Y) =	189	plf		
(L_{v}) Length of Shear Wall up to Said Location	(A_c) Location of Interest (Chord)	Uniform Seismic (W_Y) =	178	plf		
$Drag \ Load = \left(\frac{V}{L_w}\right) x_d - vxd$	Chord Force = $\left(\frac{Wx_c}{(2dc)}\right) * (L_c - xc)$	Note: Uniform seismic loads in ratio factor only if diaphragm c forces are smaller than MFRS t	listributio			

Wall Line 1					ρ=	1	.3					
				Fo	rce Ratio =	1.	30	-			-	
Wall Line Los			<u>15:</u>	Max (ρ, For	,	1.	30		Chord:	Х	(X or Y)	
V _{wind} (unfactored):	7946	lbs v _w :	143	plf (Factore		64	.00	ft	W _w :	189	plf	
V _{Seismic} (unfactored):	7968	lbs V _s :	168	plf (Factore	ed) L _{sw} :	33	.25	ft	W _{EQ} :	178	plf	
											-	
						Fact	ored	Drag		Total	Chord	
Location:	A _d (ft)	L _v (ft)	A _c (ft)	L _c (ft)	d _d (ft)	SW a	bove	(lbs)	W/S	Drag (lb)	· · /	W/S
PL Step	21.50	21.50				()	2253	S	2253	NA	W
Diaphragm B	oundany	and Shoor w	all Connocti	on (Eastar	ad loade) :							
							000				1	
Sheathing Conn. length: Factored SW Above, W:	52 0		nit Shear (w): nit Shear (s):		plf plf	< <	238 170		Unblocke Unblocke		-	
Factored SW Above, W:	0	lbs 0	fiit Offear (5).	159	рп		170	рп	UTIDIOCKE	,u	1	
Design Notes:	U	IDS										
PL Step	CS14 Coi	I Strap w/ 2x	flat blk'g fron	n lower 10' F	ין						T	
r												
Wall Line B					ρ=	1	.3					
				Fo	rce Ratio =		30	1				
Wall Line Loa	ading and	l Dimensior	is:	Max (p, For	ce Ratio) =	1.	30		Chord:	Y	(X or Y)	
V _{wind} (unfactored):	6558	lbs v _w :	80	plf (Factore	d) L _w :	52	.00	ft	W _w :	144	plf	
V _{Seismic} (unfactored):	3734	lbs v _s :	53	plf (Factore	d) L _{sw} :	4	9	ft	W _{EQ} :	263	plf	
				I				1			7.	
						Fact	ored	Drag		Total	Chord	
Location:	A _d (ft)	L _v (ft)	A _c (ft)	L _c (ft)	d _d (ft)		bove	(lbs)	W/S	Drag (lb)		W/S
Multi-Purpose Ext.	52.00					()	3935	W	3935	NA	S
PL Step	40.00	37.00				()	56	W	56	NA	S
				.								
Diaphragm B	-								1			
Sheathing Conn. length:	52		nit Shear (w):		plf	<	238		Unblocke		-	
Factored SW Above, W:	0		nit Shear (s):	65	plf	<	170	plf	Unblocke	d		
Factored SW Above, E:	0	lbs										
Design Notes:	Drag Trus	e = 4000 lbs	, (7) A35 Clip	e Truce to F	bl Top Pl						ĩ	
Multi-Purpose Ext. PL Step	-		flat blk'g fron								ł	
T E Otop	001100		nat bit g non		•							
Wall Line C					ρ=	1	.3					1
				Fo	rce Ratio =		30					
Wall Line Lo	ading and	l Dimensior	ns:	Max (p, For		-	30		Chord:	Y	(X or Y)	
V _{wind} (unfactored):	5494	lbs v _w :	120	plf (Factore	,	52	.00	ft	W _w :	144	plf	
V _{Seismic} (unfactored):	3392		86	plf (Factore		27	7.5	ft	W _{EQ} :		plf	
· Seisinic (····································	0002	100 . 3.	00		u) _ sw:	21	.0	1.,	EQ.	200]pii	
						Fact	ored	Drag		Total	Chord	
Location:	A _d (ft)	L _v (ft)	A _c (ft)	L _c (ft)	d _d (ft)		bove	(lbs)	W/S	Drag (lb)		W/S
Upper Truss	26.00	•()	~ (/)	1648	W	1648	NA	S
Lower Truss	26.00					(C	1648	W	1648	NA	S
										-	•	
Diaphragm B	oundary a				ed loads):						-	
Sheathing Conn. length:	52		nit Shear (w):		plf	<	238	-	Unblocke		1	
Factored SW Above, W:	0		nit Shear (s):	59	plf	<	170	plf	Unblocke	ed		
Factored SW Above, E:	0	lbs										
Design Notes:	Drag Tr										7	
Upper Truss			, (5) A35 Clip , (4) A35 Clip								ł	
Lower Truss	Diag nus	53 - 2000 lbs	, (4) A35 Olip	5 HUSS 10 L	bi top Fi							

Wall Line D						ρ =		.3					
			_			orce Ratio =		30	-				
Wall Line Loa					Max (p, For	,		30		Chord:		(X or Y)	
V _{wind} (unfactored):	5332	lbs	v _w :	156	plf (Factore	ed) L _w :	52.00 ft		W _w : 144		plf		
V _{Seismic} (unfactored):	3523	lbs	Vs:	120	plf (Factore	ed) L _{sw} :	20.5 ft		ft	W _{EQ} : 263		plf	
		-			-				-			-	
							Fact	ored	Drag		Total	Chord	
Location:	A _d (ft)	L _v (ft)	A _c (ft)	L _c (ft)	d _d (ft)	SW a	bove	(lbs)	W/S	Drag (lb)	(lbs)	W/S
Library - Classroom	52.00						(0	3206	S	3206	NA	S
Dianta and D					· · · / F · · · · · ·								
Diaphragm Boundary and Shear wall Connection <i>(Factored loads)</i> :													
Sheathing Conn. length:	52	ft		nit Shear (w):	62	plf	<	238		Unblocke		-	
Factored SW Above, W:	0	lbs	U	nit Shear (s):	62	plf	<	170	plf	Unblocke	ed		
Factored SW Above, E:	0	lbs											
Design Notes:													
Library - Classroom Drag Truss = 3500 lbs, (6) A35 Clips Truss to Dbl Top Pl													
Wall Line E $\rho = 1.3$													
Wall Line E													
						orce Ratio =	1.	30				1	
Wall Line Loa					Max (p, For	orce Ratio = ce Ratio) =	1. 1.	30 30		Chord:		(X or Y)	
Wall Line Loa V _{wind} (unfactored):	2815	Dime	nsior v _w :	<u>188</u>	Max (ρ, For plf <i>(Factore</i>	orce Ratio = rce Ratio) = ed) L _w :	1. 1.	30	ft	W _w :		(X or Y) plf	
Wall Line Loa	2815				Max (p, For	orce Ratio = rce Ratio) = ed) L _w :	1. 1. 52	30 30	ft ft			` '	
Wall Line Loa V _{wind} (unfactored):	2815	lbs	<i>v</i> _w :	188	Max (ρ, For plf <i>(Factore</i>	orce Ratio = rce Ratio) = ed) L _w :	1. 1. 52	30 30 .00		W _w :	144	plf	
Wall Line Loa V _{wind} (unfactored):	2815	lbs	<i>v</i> _w :	188	Max (ρ, For plf <i>(Factore</i>	orce Ratio = rce Ratio) = ed) L _w :	1. 1. 52	30 30 .00 9		W _w :	144 263 Total	plf plf Chord	
Wall Line Loa V _{wind} (unfactored):	2815	lbs	v _w : v _s :	188	Max (ρ, For plf <i>(Factore</i>	orce Ratio = rce Ratio) = ed) L _w :	1. 1. 52 Fact	30 30 .00 9	ft	W _w :	144 263	plf plf Chord	W/S
Wall Line Loa V _{wind} (unfactored): V _{Seismic} (unfactored):	2815 1834	lbs Ibs	v _w : v _s :	188 143	Max (ρ, For plf <i>(Factore</i> plf <i>(Factore</i>	prce Ratio = rce Ratio) = ed) L_w : ed) L_{sw} :	1. 1. 52 Fact SW a	30 30 .00 9 ored	ft Drag	W _w : W _{EQ} :	144 263 Total	plf plf Chord	
Wall Line Loa V _{wind} (unfactored): V _{Seismic} (unfactored): Location: Classroom Ext.	2815 1834 A _d (ft) 52.00	lbs lbs L _v (v _w : v _s : ft)	188 143 A _c (ft)	Max (ρ, For plf <i>(Factore</i> plf <i>(Factore</i> L _c (ft)	brce Ratio = rce Ratio) = rcd) L_w : rd) L_{sw} : d_d (ft)	1. 1. 52 Fact SW a	30 30 .00 9 ored above	ft Drag (lbs)	W _w : W _{EQ} : W/S	144 263 Total Drag (lb)	plf plf Chord (lbs)	W/S
Wall Line Loa Vwind (unfactored): Vseismic (unfactored): Location: Classroom Ext. Diaphragm B	2815 1834 A _d (ft) 52.00 oundary a	Ibs Ibs L _v (v _w : v _s : ft) ear w	188 143 A _c (ft) vall Connecti	Max (ρ, For plf <i>(Factore</i> plf <i>(Factore</i> L _c (ft) <u>on <i>(Factore</i></u>	brce Ratio = ce Ratio) = cd) L_w : cd) L_{sw} : d_d (ft) dd (ft)	1. 1. 52 Fact SW a	30 30 .00 9 ored above 0	ft Drag (Ibs) 1689	W _w : W _{EQ} : W/S W	144 263 Total Drag (lb) 1689	plf plf Chord (lbs)	W/S
Wall Line Loz Vwind (unfactored): Vseismic (unfactored): Location: Classroom Ext. Diaphragm B Sheathing Conn. length:	2815 1834 A _d (ft) 52.00 oundary a 52	lbs lbs L _v (and Sh	v _w : v _s : ft) ear w	188 143 A _c (ft) vall Connecti nit Shear (w):	Max (ρ, For plf <i>(Factore</i> plf <i>(Factore</i> L _c (ft) on <i>(Factore</i> 32	proce Ratio = rece Ratio) = red) L_w : red) L_{sw} : d_d (ft) plf	1. 1. 52 Fact SW a	30 30 .00 9 ored above 0	ft Drag (lbs) 1689 plf	W _w : W _{EQ} : W/S W	144 263 Total Drag (lb) 1689	plf plf Chord (lbs)	W/S
Wall Line Loa Vwind (unfactored): Vseismic (unfactored): Location: Classroom Ext. Diaphragm B Sheathing Conn. length: Factored SW Above, W:	2815 1834 A _d (ft) 52.00 oundary a	Ibs Ibs L _v (v _w : v _s : ft) ear w	188 143 A _c (ft) vall Connecti	Max (ρ, For plf <i>(Factore</i> plf <i>(Factore</i> L _c (ft) on <i>(Factore</i> 32	brce Ratio = ce Ratio) = cd) L_w : cd) L_{sw} : d_d (ft) dd (ft)	1. 1. 52 <i>Fact</i> <i>SW</i> a	30 30 .00 9 ored above 0	ft Drag (lbs) 1689 plf	W _w : W _{EQ} : W/S W	144 263 Total Drag (lb) 1689	plf plf Chord (lbs)	W/S
Wall Line Loz Vwind (unfactored): Vseismic (unfactored): Location: Classroom Ext. Diaphragm B Sheathing Conn. length:	2815 1834 A _d (ft) 52.00 oundary a 52	lbs lbs L _v (and Sh	v _w : v _s : ft) ear w	188 143 A _c (ft) vall Connecti nit Shear (w):	Max (ρ, For plf <i>(Factore</i> plf <i>(Factore</i> L _c (ft) on <i>(Factore</i> 32	proce Ratio = rece Ratio) = red) L_w : red) L_{sw} : d_d (ft) plf	1. 1. 52 9 <i>Fact</i> <i>SW</i> a	30 30 .00 9 ored above 0	ft Drag (lbs) 1689 plf	W _w : W _{EQ} : W/S W	144 263 Total Drag (lb) 1689	plf plf Chord (lbs)	W/S
Wall Line Loa Vwind (unfactored): Vseismic (unfactored): Location: Classroom Ext. Diaphragm B Sheathing Conn. length: Factored SW Above, W:	2815 1834 A _d (ft) 52.00 0 0 0	lbs lbs L _v (and Sh ft lbs lbs	v _w : v _s : ft) ear w Ur U	188 143 A _c (ft) vall Connecti nit Shear (w):	Max (ρ, For plf <i>(Factore</i> plf <i>(Factore</i> L _c (ft) <u>on <i>(Factore</i> 32 32</u>	brce Ratio = cce Ratio) = cd) L_w : cd) L_{sw} : d_d (ft) plf plf	1. 1. 52 9 <i>Fact</i> <i>SW</i> a	30 30 .00 9 ored above 0	ft Drag (lbs) 1689 plf	W _w : W _{EQ} : W/S W	144 263 Total Drag (lb) 1689	plf plf Chord (lbs)	W/S

3115 S Russell St. • Missoula, Montana 59801 • 406-728-1880 • fax 406-728-0276

December 31, 2024

Angela Pugh, P.E. Montana Department of Environmental Quality Public Water and Subdivision Section Engineering Bureau

Re: EQ#24-2665 Seventh Day Adventist Subdivision Review EQ#24-2506 Seventh Day Adventist Public Wastewater Review EQ#24-2444 Seventh Day Adventist Public Water System Review

Dear Angela,

This letter is in response to your review letter for the subdivision, public wastewater, and public water review. Below you will find individual responses to each of your presented deficiencies. Attached you can find supporting materials with the requested updates.

<u>General</u>

- 1. Please provide a legible copy of the COS with the date clearly shown, ARM 17.36.103(1).
 - The attached COS shows the survey date as December 1974 and the purpose is to create a five-acre tract as an "occasional sale."
- 2. Consider changing Note (c) on site layout that says, "no known sources of contamination within 500' of the proposed water source." The proposed drainfield is currently shown 200' upgradient of the proposed public well.
 - Note has been changed stating all known sources are shown.
- 3. Please show the following on the Lot Layout, ARM 17.36.104 Table1a) Percent and direction of slope across the drainfield.b) Location sizes and design details of existing and proposed stormwater facilities.
 - See updates on attached layout.
- 4. ARM 17.36.323, Table 2, Setbacks. The sewer service does not meet the 100' setback to public drainfield see footnote (1), "components addressed in chapters 4 and 5 in Department Circular DEQ-4," and therefore a waiver to setbacks is required. Will Sanders County require a variance? If so, this must be submitted before a waiver to these facilities is considered. This waiver is in addition to the DEQ-3, deviation requests. We will waive the waiver fee. Please remove note B on the lot layout as all setbacks in ARM 17.36.323 are not met.

• The adjusted drainfield location and proposed public well location no longer require these waivers.

Stormwater

- 5. The 2-year, 24-hour storm for Trout Creek via NOAA is 1.72 inches and the DEQ IDF curve shows 1.79 inches. The submitted Appendix G sheet lists 1.2 inches. With your impervious surfaces and 1.72 inches for the 2-year, 24-hour storm I calculate 2501 ft3 of storage is required.
 - The NOAA sheet is provided that shows a 2-year, 24-hour storm of 1.74 inches and a 100-year, 24-hour storm of 3.34 inches. Impervious surface area was recalculated.
- 6. Please indicate the direction of surface runoff flow across the property with either topography or stormwater runoff arrows. DEQ-8, Standard 2.2.C.1. As currently shown, I cannot determine if the stormwater swale will retain the stormwater runoff.
 - See attached Site Layout 2 that shows specific stormwater details.
- 7. As noted in 3.b), please include the design details of the stormwater facilities on the lot layout.

a) Trapezoidal swale (depth, width, side slopes and base). How does the channel retain the stormwater onsite, rather than letting it flow offsite? Please include a swale detail that retains the stormwater or check dams.

b) Lawn and landscape is a stormwater facility and the location and square footage must be labeled on the lot layout.

*There may be additional stormwater comments pending the direction of stormwater flow onsite.

• There is no longer landscaping proposed. The existing and proposed impervious areas are graded toward the conveyance swale that will direct stormwater to a single retention pond. See updated report, calculation sheets, and details.

Public Subsurface Wastewater System & Non-degradation: Updates have been made to primary treatment. The existing 1,000 gallon tank that was installed within the last year and will serve the church (daily flow of 200 gpd) and a new 1,500 septic tank will serve the school (daily flow of 525 gpd). This will allow for short raw sewage lines and easier maintenance.

- 8. DEQ-4, Standard 4.1.1.7 requires Schedule 40 PVC sewer pipe leading into and out of the septic tank.
 - See updated details that show the proposed and existing septic tanks. The existing tank was installed in 2023 and is a pre-cast concrete tank from Montana Precast.

3115 S Russell St. • Missoula, Montana 59801 • 406-728-1880 • fax 406-728-0276

- Please add a note to the plans showing the sewer service connection must be placed at a minimum slope of ¹/₄ inch per foot toward the point of discharge, DEQ-4, Standard 4.1.2.1.
 - The notes have been added for both septic tanks. The existing tank already meets this requirement.
- 10. Please add notes to the distribution box detail to meet the requirements of DEQ-4, Standard 4.3.3.1.
 - Note has been added.
- 11. Per DEQ-4, Appendix D, Operation and Maintenance Manual please add items meeting Owner's Manual D, "The name and telephone number of a service representative, pumpers, and the local health department to be contacted in the event that the system experiences a problem."
 - See updated manual.

<u>Public Water System :</u> A new well is proposed to ensure public health and safety. This will also avoid the required deviations.

- 4. If fire flow is provided, please provide documentation as required in DEQ-3, Standard 1.1.5.b. Comment: The letter from the fire marshal states fire protection is covered by Sanders County Subdivision Regulations. How are Sanders County requirements bung met? Is the public water well providing fire protection for the church and school?
 - Section VII-P "Fire Protection" does not apply to this project because Sanders County Subdivision Regulations only apply to divisions of land and buildings for lease or rent. However, the regulations are being met per the section because of proximity to the fire department and access to all structures. The Trout Creek Fire Station is 4 minutes away (3 miles).
 - The public water well is not proposed to provide any fire suppression assistance.
- 6. Please show the elevations and designations of geologic formations on the typical well profile, DEQ-3, Standard 1.2.2.b
 - The well profile has been updated to show what is expected of the new well.
- 7. There are no stormwater facilities shown on the public water site layout sheet 1, DEQ 3, Standard 1.1.6.d, Standard 1.2.2.d.
 - See updated stormwater details.
- 8. The following deviations are required:
 - a. Well Location

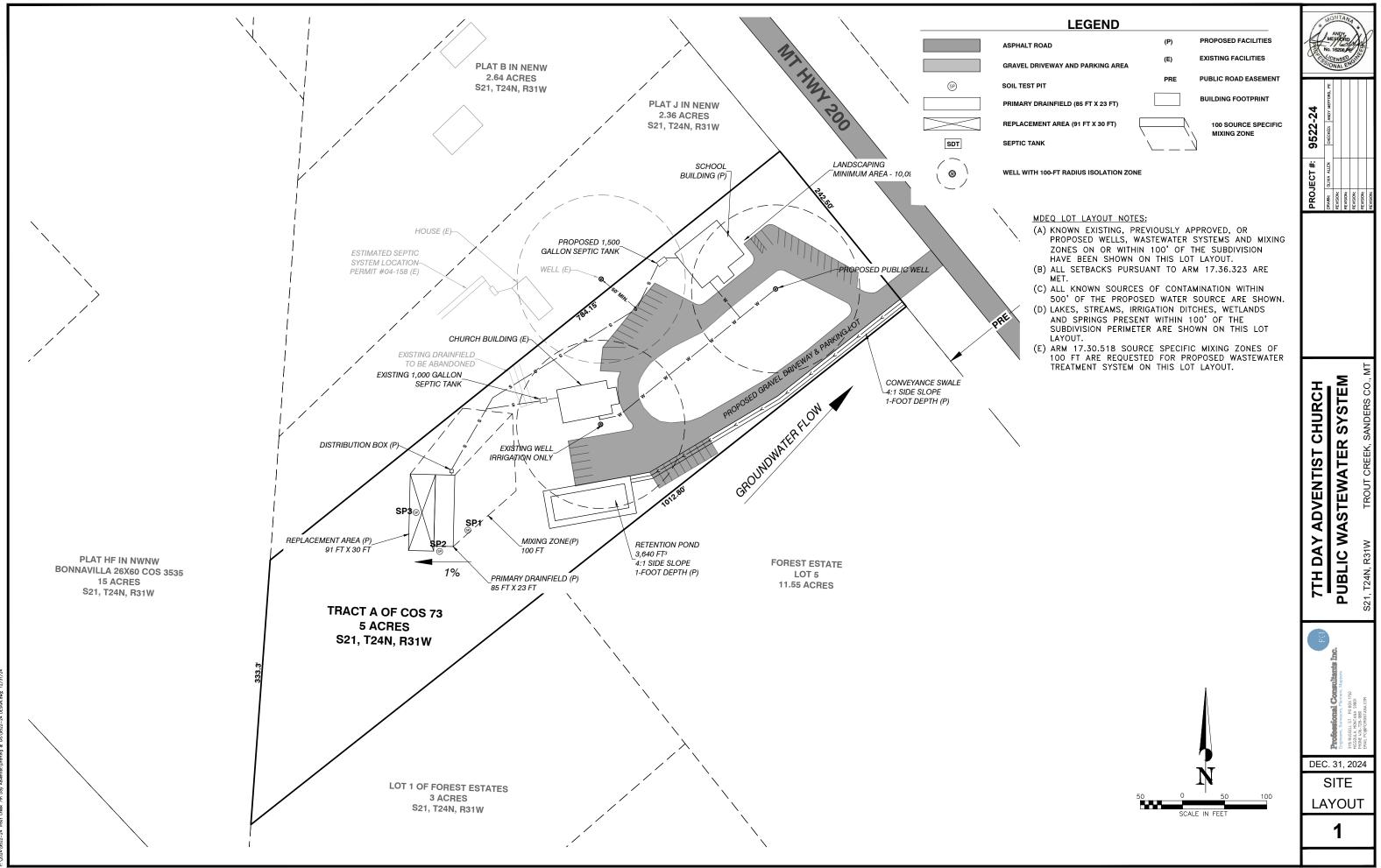
PCI

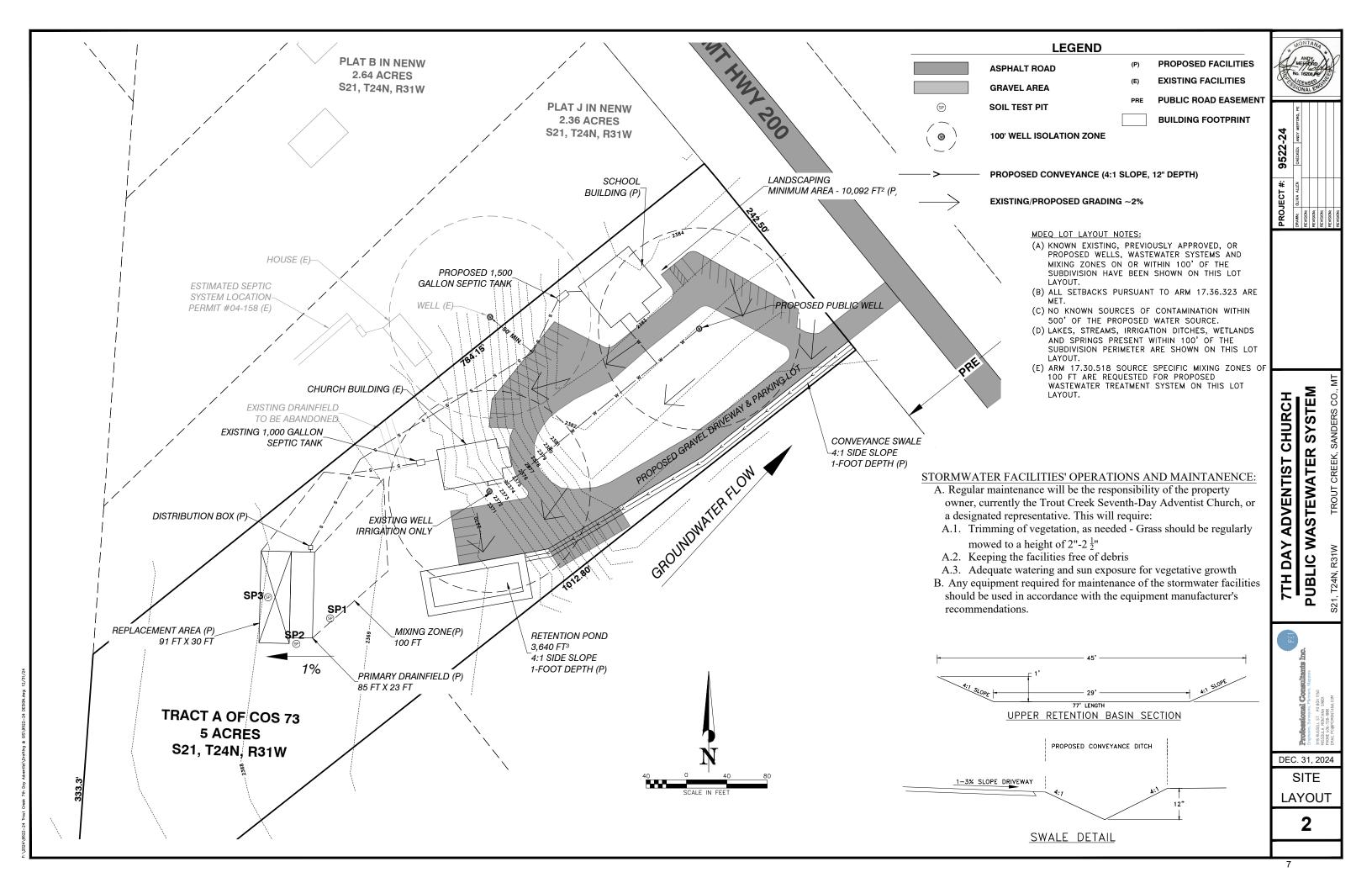
3115 S Russell St. • Missoula, Montana 59801 • 406-728-1880 • fax 406-728-0276

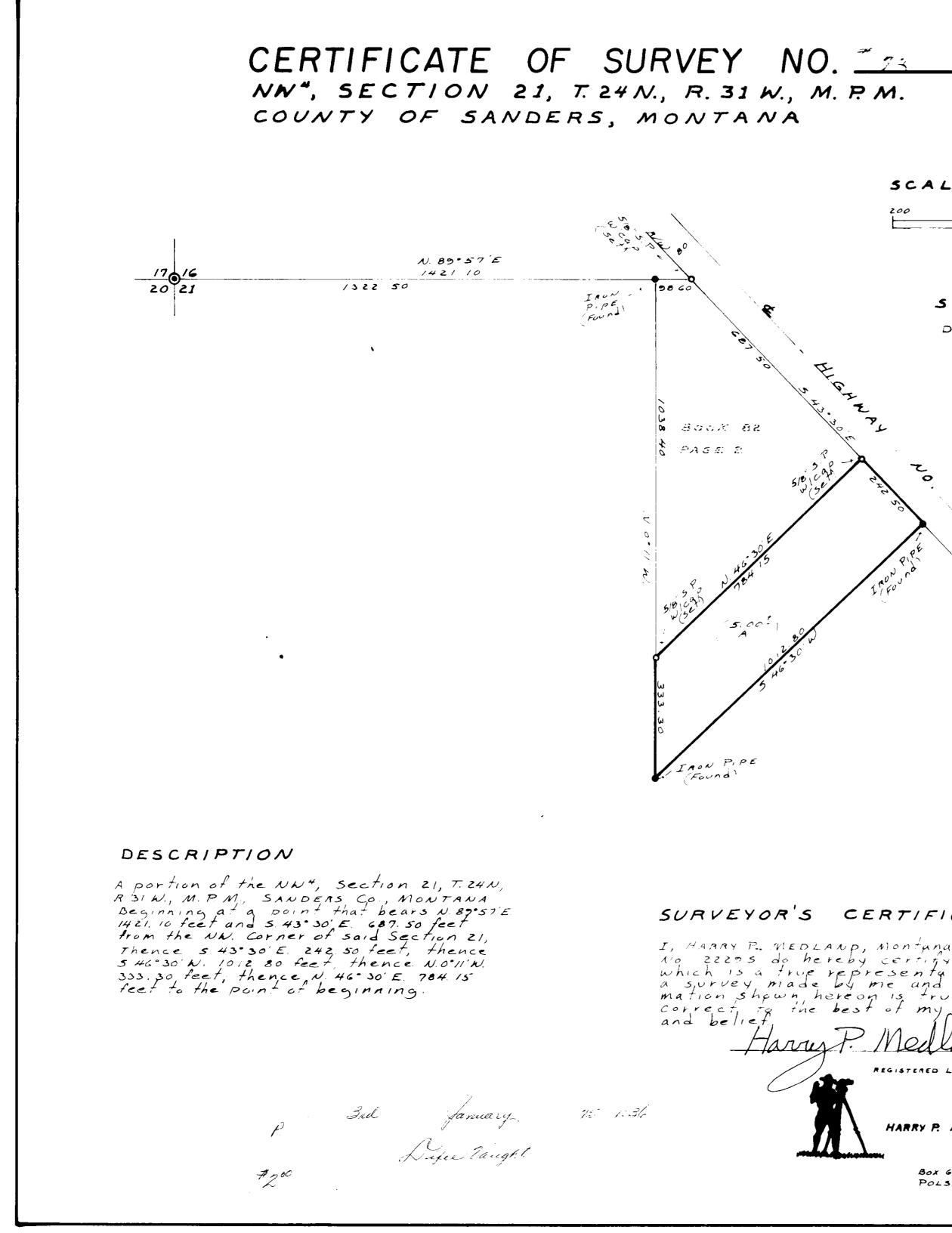
- b. Continued Protection
- c. General Construction
- The existing well is proposed to only be used as irrigation. A new well will be drilled to serve the public water system.
- 12. PWS-6 has been reviewed and the SWPP recommends approval with some recommendations.
 - *The PWS-6 Report has been updated for the proposed well and with the recommendations.*

I hope that the items addressed are found to be complete and satisfactory as per your requirements for the Trout Creek Seventh Day Adventist Church Subdivision and Public Water/Sewer Reviews. If you have any questions, or require additional information, please feel free to contact me.

Sincerely,


Kulu


Kane Leithead, EIT <u>kane@lmcwyoming.com</u> (307)461-3858


GENERAL

COS SITE LAYOUT

5

SCALE SURVEYED DECEMBER, 1974 CLIENT MR CLAYTON SMITH TROUT CREEK, MONTANA PURPOSE OF SURVEY To create a five acre tract that the ownership will be transferred as an "occasional sale", pursuant to Section 11-3862 R.C. M. Revised. **5**.00 PIPE SURVEYOR'S CERTIFICATION APPROVED I, HAARY P. MEDLAND, Montana R.L.S. No 22295 do hereby certify this plat which is a true representation of a survey made by me and the infor-mation shown hereon is true and correct to the best of my knowledge and belief. _,1975 EXAMINING MONT. R.L.S. NO. Harry P. Medland REGISTERED LAND SURVEYOR NE NW 21 <u>24</u> HARRY P. MEDLAND ..

> Box 663 Polson, Mont.

> > .

CERTIFICATE OF SURVEY NO. 12

STORMWATER

GRADING AND DRAINAGE REPORT

SITE INFORMATION

Slopes on the site are relatively flat ($\sim 1\% - 3\%$) with forestland vegetation of large trees, grasses, and light underbrush. Hydrologic patterns are observed as shallow woodland flows with sheet flows across the short grassed. There are low points on the property that act as natural swales and retention facilities. The surrounding land is sparse residential and commercial area.

INITIAL STORM WATER FACILITY

There are no pre-development impervious areas considered. Post development facilities include the gravel driveway, school, and church. All impervious areas were calculated using the survey data, aerial imagining and conservative estimate from Civil 3D. Total post-development impervious area for the lot is 40,770 ft², making almost exactly 19% of the lot impervious area, a professional engineered design and as-builts are not required. Initial Stormwater Facility must thusly be sized:

$$V[ft^3] = 0.5$$
" X 40,770 ft² / 12 = **1699 ft³**

Runoff calculations are made using the rational method. See attached spreadsheet for more details. The change in post-development volume runoff for the 2yr-24hr storm, per DEQ8 Section 3.3, is about 3,640 ft³. This is more than the initial stormwater facility, a facility that can retain 3,640 ft³ of water will satisfy the requirements.

STORM WATER FACILITIES

The natural grading of the upper bench area, nearest the highway, is to the southeast and south. Whereas closer to the church and behind the church it is more southwest draining. This natural grading will allow the proposed gravel roads to be built to drain toward a single conveyance swale that flows to a retention pond.

The proposed swale has 4:1 slopes and a depth of 1 ft. It will run along the southeast property boundary to capture the runoff and convey it to the proposed pond. This will allow 4 cubic feet per linear foot of conveyance which will handle the 100yr-24hr storm per the standard plan sheet.

The swale will lead to a retention pond that is proposed to be $3,640 \text{ ft}^3$ to meet requirements. It will have 4:1 slopes and be 1 ft deep. Basal dimensions are 29' x 89' and upper dimensions are 45' x 105'.

During the 10-year storm event, the gravel driveways grading and sheetflows will not allow roadways to be overtopped.

The buildings or drainfield will not be inundated by the 100-year storm because the low flows and lack of distinct shallow flows or natural flow paths through the draifnield. In the case of the

Trout Creek Seventh Day Adventist Church	Stormwater Design
PCI Project #: 9522-24	Page 1

100 year storm, the retention swale may fill up but will over flow onto shallow graded woodland area.

The maintenance of the native grasses will promote stabilization. The proposed drainfield, pond, and conveyance structures should be seeded to re-establish vegetation.

The stormwater facilities are located in loose, gravelly sandy loam soils with a conservatively estimated percolation rate of 10 minutes per inch. With a wide and shallow pond as proposed, stormwater can infiltrate within one hour of storm end and will infiltrate sooner than 72 hours.

Prepared by: Landmark Consulting LLC.

Kula

Kane Leithead, EIT

Date: <u>12/27/2024</u>

Trout Creek Seventh Day Adventist Church	Stormwater Design
PCI Project #: 9522-24	Page 2

Precipitation Frequency Data Server

CREEK RS Station ID: 24-8380 Location name: Trout Creek, Montana, USA* Latitude: 47.8669°, Longitude: -115.6278° Elevation: Elevation: Elevation (station metadata): 2356 ft** * source: ESRI Maps ** source: USGS

NOAA Atlas 14, Volume 12, Version 2 TROUT

POINT PRECIPITATION FREQUENCY ESTIMATES

Carl Trypaluk, Dale Unruh, Michael St.Laurent, Austin Jordan, Rama Sesha Sridhar Mantripragada, Sandra Pavlovic, Greg Fall, Fernando Salas

NOAA, National Weather Service, Silver Spring, Maryland

PF_tabular | PF_graphical | Maps_&_aerials

PF tabular

PDS	S-based p	oint preci	pitation fr	equency	estimates	with 90%	confiden	ce interva	lls (in incl	nes) ¹
Duration				Averaç	ge recurrenc	e interval ()	/ears)			
Duration	1	2	5	10	25	50	100	200	500	1000
5-min	0.107	0.162	0.248	0.317	0.406	0.472	0.534	0.594	0.668	0.720
	(0.092-0.123)	(0.140-0.190)	(0.211-0.299)	(0.264-0.390)	(0.321-0.515)	(0.356-0.611)	(0.376-0.710)	(0.394-0.820)	(0.415-0.977)	(0.435-1.10)
10-min	0.148 (0.128-0.171)	0.224 (0.195-0.263)	0.344 (0.293-0.415)	0.439 (0.366-0.541)	0.563 (0.445-0.715)	0.654 (0.493-0.847)	0.741 (0.521-0.985)	0.824 (0.547-1.14)	0.926 (0.575-1.36)	0.998 (0.603-1.53)
15-min	0.172	0.260	0.400	0.510	0.655	0.760	0.861	0.957	1.08	1.16
	(0.148-0.198)	(0.226-0.306)	(0.340-0.482)	(0.425-0.628)	(0.518-0.830)	(0.573-0.984)	(0.605-1.14)	(0.635-1.32)	(0.668-1.57)	(0.701-1.78)
30-min	0.209 (0.181-0.242)	0.317 (0.276-0.373)	0.487 (0.414-0.587)	0.622 (0.518-0.766)	0.798 (0.631-1.01)	0.926 (0.699-1.20)	1.05 (0.738-1.40)	1.17 (0.774-1.61)	1.31 (0.814-1.92)	1.41 (0.854-2.17)
60-min	0.252	0.380	0.582	0.741	0.950	1.10	1.25	1.39	1.56	1.68
	(0.218-0.292)	(0.331-0.447)	(0.495-0.701)	(0.617-0.913)	(0.751-1.20)	(0.832-1.43)	(0.878-1.66)	(0.921-1.92)	(0.969-2.28)	(1.02-2.58)
2-hr	0.383	0.519	0.733	0.904	1.13	1.30	1.45	1.61	1.80	1.94
	(0.338-0.434)	(0.460-0.599)	(0.636-0.867)	(0.767-1.09)	(0.915-1.40)	(1.00-1.64)	(1.07-1.89)	(1.12-2.18)	(1.18-2.59)	(1.24-2.92)
3-hr	0.505	0.640	0.854	1.02	1.25	1.42	1.59	1.75	1.95	2.10
	(0.454-0.567)	(0.575-0.728)	(0.749-0.991)	(0.881-1.21)	(1.03-1.52)	(1.13-1.77)	(1.20-2.03)	(1.26-2.33)	(1.33-2.76)	(1.39-3.12)
6-hr	0.761	0.897	1.12	1.29	1.54	1.72	1.90	2.08	2.31	2.48
	(0.692-0.839)	(0.813-0.997)	(0.993-1.26)	(1.13-1.48)	(1.30-1.80)	(1.42-2.06)	(1.51-2.35)	(1.60-2.68)	(1.70-3.17)	(1.78-3.58)
12-hr	1.11	1.27	1.52	1.74	2.04	2.27	2.50	2.73	3.04	3.28
	(1.02-1.21)	(1.16-1.38)	(1.38-1.68)	(1.56-1.94)	(1.79-2.31)	(1.95-2.61)	(2.11-2.96)	(2.26-3.36)	(2.44-3.97)	(2.57-4.49)
24-hr	1.54 (1.42-1.67)	1.74 (1.60-1.89)	2.06 (1.89-2.26)	2.34 (2.12-2.57)	2.73 (2.44-3.03)	3.04 (2.69-3.41)	3.34 (2.92-3.84)	3.66 (3.15-4.36)	4.10 (3.44-5.14)	4.43 (3.66-5.82)
2-day	1.97	2.23	2.66	3.02	3.53	3.92	4.32	4.74	5.30	5.73
	(1.82-2.15)	(2.05-2.43)	(2.42-2.92)	(2.72-3.34)	(3.14-3.94)	(3.45-4.44)	(3.75-5.00)	(4.04-5.67)	(4.41-6.70)	(4.68-7.59)
3-day	2.27	2.57	3.07	3.49	4.08	4.54	5.00	5.47	6.11	6.60
	(2.08-2.48)	(2.35-2.82)	(2.78-3.39)	(3.14-3.88)	(3.61-4.59)	(3.96-5.17)	(4.31-5.83)	(4.64-6.61)	(5.05-7.82)	(5.35-8.84)
4-day	2.52	2.86	3.42	3.88	4.53	5.03	5.54	6.05	6.74	7.27
	(2.31-2.76)	(2.61-3.13)	(3.09-3.77)	(3.48-4.32)	(4.00-5.11)	(4.39-5.75)	(4.76-6.48)	(5.12-7.34)	(5.57-8.65)	(5.90-9.77)
7-day	3.18	3.60	4.28	4.83	5.59	6.18	6.75	7.33	8.09	8.66
	(2.92-3.48)	(3.29-3.95)	(3.87-4.72)	(4.33-5.36)	(4.96-6.30)	(5.42-7.06)	(5.86-7.91)	(6.29-8.90)	(6.82-10.4)	(7.20-11.6)
10-day	3.75	4.24	5.01	5.65	6.50	7.15	7.79	8.42	9.24	9.84
	(3.44-4.10)	(3.87-4.64)	(4.53-5.52)	(5.06-6.25)	(5.76-7.30)	(6.28-8.16)	(6.78-9.11)	(7.26-10.2)	(7.85-11.8)	(8.28-13.1)
20-day	5.32 (4.87-5.85)	6.00 (5.46-6.60)	7.08 (6.36-7.82)	7.96 (7.09-8.84)	9.13 (8.05-10.3)	10.0 (8.76-11.5)	10.9 (9.42-12.8)	11.7 (10.1-14.2)	12.8 (10.8-16.4)	13.6 (11.4-18.2)
30-day	6.58 (6.01-7.24)	7.40 (6.71-8.15)	8.71 (7.80-9.62)	9.76 (8.67-10.8)	11.2 (9.81-12.6)	12.2 (10.6-14.0)	13.2 (11.4-15.5)	14.2 (12.2-17.2)	15.4 (13.1-19.8)	16.3 (13.8-21.9)
45-day	8.35 (7.61-9.19)	9.32 (8.44-10.2)	10.9 (9.72-12.0)	12.1 (10.7-13.4)	13.7 (12.1-15.4)	14.8 (13.0-17.0)	16.0 (13.9-18.7)	17.0 (14.8-20.7)	18.4 (15.8-23.5)	19.3 (16.6-25.9)
60-day	9.90 (9.03-10.9)	11.0 (9.95-12.1)	12.7 (11.4-14.0)	14.0 (12.5-15.5)	15.8 (14.0-17.7)	17.0 (15.0-19.5)	18.2 (16.0-21.3)	19.3 (16.9-23.4)	20.7 (18.1-26.4)	21.7 (19.0-28.9)

¹ Precipitation frequency (PF) estimates in this table are based on frequency analysis of partial duration series (PDS).

Numbers in parenthesis are PF estimates at lower and upper bounds of the 90% confidence interval. The probability that precipitation frequency estimates (for a given duration and average recurrence interval) will be greater than the upper bound (or less than the lower bound) is 5%. Estimates at upper bounds are not checked against probable maximum precipitation (PMP) estimates and may be higher than currently valid PMP values.

Please refer to NOAA Atlas 14 document for more information.

Back to Top

PF graphical

12

Appendix G: Standard Storm Drainage Plan

Sudivision Name	7th Day A	dventist C	hurch								
EQ#	2	24-2444									
County	Sand	ý									
Location	Tro										
Lot/Area No.	CS 73 Parcel A										
Intensity Values											
2-year, T _c	0.91	inches/ho	ur								
2-year, 24-hour	1.74	inches									
10-year, T _c	1.52	inches/ho	ur								
100-year, T _c	2.4	inches/ho	ur								
100-year, 24-hour	3.34	3.34 inches									
Total Area/Lot Size	5 acres = 217800										

Initial Stormwater Facility Volume (0.5" x Impervious Area) =

Rational Method Co-Efficients (C)0.9Paved/hard surfaces0.8Gravel surfaces0.1Lawn/landscaping0.2Unimproved areas

Q=C*i*A

			-											
				2-year,	Г _с	2	-year, 24-ho	our		10-year,	T _c	1	.00-year	, Т _с
Pre-Deve	lopment Characteri	istics	((flow rat	e)		(volume)			(flow rat	e)		(flow rat	:e)
Paved/House Area	0 acres	0 ft ²	Q=	0.000	ft ³ /sec	V=	0.000	ft ³	Q=	0.000	ft ³ /sec	Q=	0.000	ft ³ /
Gravel Area	0 acres	0 ft ²	Q=	0.000	ft ³ /sec	V=	0.000	ft ³	Q=	0.000	ft ³ /sec	Q=	0.000	ft ³ /
Lawn/Landscaping	0 acres	0 ft ²	Q=	0.000	ft ³ /sec	V=	0.000	ft ³	Q=	0.000	ft ³ /sec	Q=	0.000	ft ³ /
Unimproved Area	5 acres	217800 ft ²	Q=	0.918	ft ³ /sec	V=	6316.200	ft ³	Q=	1.533	ft ³ /sec	Q=	2.420	ft ³ /
Total	5 acres	217800 ft ²	Q _{Total} =	0.918	ft³/sec	V _{Total} =	6316.200	ft³	Q _{Total} =	1.533	ft³/sec	Q _{Total} =	2.420	ft³/

1698.8 ft^³

			2-year, T _c		2-year, 24-hour			10-year, T _c			1	100-year, T _c		
Post-I	Post-Development Characteristics		(flow rate)		volume)			(flow rate)			(flow rate)			
Paved/House Area	0.140725436 acres	6130 ft ²	Q=	0.116	ft ³ /sec	V=	799.965	ft ³	Q=	0.194	ft ³ /sec	Q=	0.307	ft ³ /sec
Gravel Area	0.795224977 acres	34640 ft ²	Q=	0.584	ft ³ /sec	V=	4018.240	ft ³	Q=	0.975	ft ³ /sec	Q=	1.540	ft ³ /sec
Lawn/Landscaping	0 acres	0 ft ²	Q=	0.000	ft ³ /sec	V=	0.000	ft ³	Q=	0.000	ft ³ /sec	Q=	0.000	ft ³ /sec
Unimproved Area	4.064049587 acres	177030 ft ²	Q=	0.746	ft ³ /sec	V=	5133.870	ft ³	Q=	1.246	ft ³ /sec	Q=	1.967	ft ³ /sec
Total	5 acres	217800 ft ²	Q _{Total} =	1.446	ft³/sec	V _{Total} =	9952.075	ft°	Q _{Total} =	2.415	ft³/sec	Q _{Total} =	3.813	ft³/sec
Rui	Runoff Flow/Volume Change			0.528	ft³/sec	ΔV=	3635.875	ft³	ΔQ=	0.882	ft³/sec	ΔQ=	1.393	ft³/sec

Required Minimum Facility Volume: 3635.9 ft³

= input field

ft³/sec ft³/sec ft³/sec ft³/sec ft³/sec

Summary - DEQ 8

1. Enter Intensity Data

Click here to enter data

Location Data	ОК
Pre-development data	ОК
Post-development data	ОК

1. Enter Flow Data

Click here to enter data

Drainage area	ОК
Pre-development data	ОК
Post-development data	ОК

Summary of Results

Closest Meteorological Station	TROUT CREEK 2 W
Total 2 year storm event, 24 hour rainfall (inches)	1.74
Post Development Time of Concentration (min)	17.34
2 year event Change in Q (cfs)	0.83

	2 year	10 year	100 year
Post - Pre Volume (cf)	2971.38	4975.22	7842.06

Initial Stormwater Facility Size (cf)	1,698.75
DEQ 8 Final Minimum Pond Size (cf)	2971.38
Exempt Storm Water Plan Minimum Pond Size (cf)	7789.21

Return to Summary

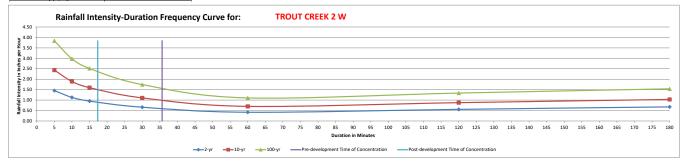
Rainfall Intensity for DEQ 8

1. Location Data:

Latitude:	47.8302778
Longitude:	-115.5819444
Distance to closest station (km)	3.85
Closest meteorological station	TROUT CREEK 2 W
2-hour, 24-hour precipitation (in)	1.74

2. Pre-development Hydraulic Path:

Flow Type	Surface Description	Flow Length (ft)	Land Slope (ft/ft)	Culvert Diameter (in)	Depth of Flow in Channel (in) or Culvert (in)	Channel - Top Width (ft.)	Channel - Bottom Width (ft.)	Cross Sectional Flow Area (ft^2)	Wetted Perimeter (ft)	n	Average Velocity (ft/s)	Tt (hr)	Tt (min)
Sheet	Short Grass Prairie	300	0.02							0.15	n/a	0.53	32.00
Shallow	Woodlands	150	0.02							0.101	0.69	0.06	3.64


3. Post-development Hydraulic Path:

Flow Type	Surface Description	Flow Length (ft)	Land Slope (ft/ft)		Depth of Flow in Channel (in) or Culvert (in)	Channel - Top Width (ft.)	Channel - Bottom Width (ft.)	Cross Sectional Flow Area (ft^2)	Wetted Perimeter (ft)	n	Average Velocity (ft/s)	Tt (hr)	Tt (min)
Sheet	Short Grass Prairie	50	0.02							0.15	n/a	0.13	7.63
Shallow	Unpaved	160	0.02							0.025	2.77	0.02	0.96
Sheet	Dense Grasses	20	0.02							0.24	n/a	0.09	5.34
Channel_Triangular	Vegetation	200	0.02		12	8		4.00	16.12	0.085	0.98	0.06	3.41
Appendis F. http://www.ncs.usda.gov/Internet/FSE_DC													

4. Time of Concentration and Rainfall Intensity (24-hour storm event):

Pre-development Path						
Total Time of Concentration (min)	35.64					
Rainfall Intensity (in/hr), 2 Year	0.61					
Rainfall Intensity (in/hr), 10 Year	1.02					
Rainfall Intensity (in/hr), 100 Year	1.61					

Post-development Path						
17.34						
0.91						
1.52						
2.40						

http://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/stelprdb1044171.pc

Flow Data for DEQ 8

1. Total Drainage Area Size

Drainage Area Size (sq. ft.)	217,800.00

2. Pre-development Drainage Area Characteristics:

Surface Type	Square Footage	Acres
Paved Areas	0.00	0.00
Structures	0.00	0.00
Graveled Area	0.00	0.00
Landscape	0.00	0.00
Unimproved	217,800.00	5.00
Total lot size	217,800.00	5.00

3. Post-development Drainage Area Characteristics:

Surface Type	Square Footage	Acres
Paved Areas	0.00	0.00
Structures	6,130.00	0.14
Graveled Area	34,640.00	0.80
Landscape	0.00	0.00
Unimproved	177,030.00	4.06
Total lot size	217,800.00	5.00

4. Required Initial Stormwater Facility Volume (Retained on Site)

	Cubic Feet	Acre-Feet
Retained First 0.5 inch runoff volume	1,698.75	0.04

5. Weighted Coefficient

Surface Type	Pre-Development	Post-Development
Paved Areas	0.00	0.00
Structures	0.00	0.13
Graveled Area	0.00	0.64
Landscape	0.00	0.00
Unimproved	1.00	0.81
Total Weighted Coef.	1.00	1.58
Cw	0.20	0.315

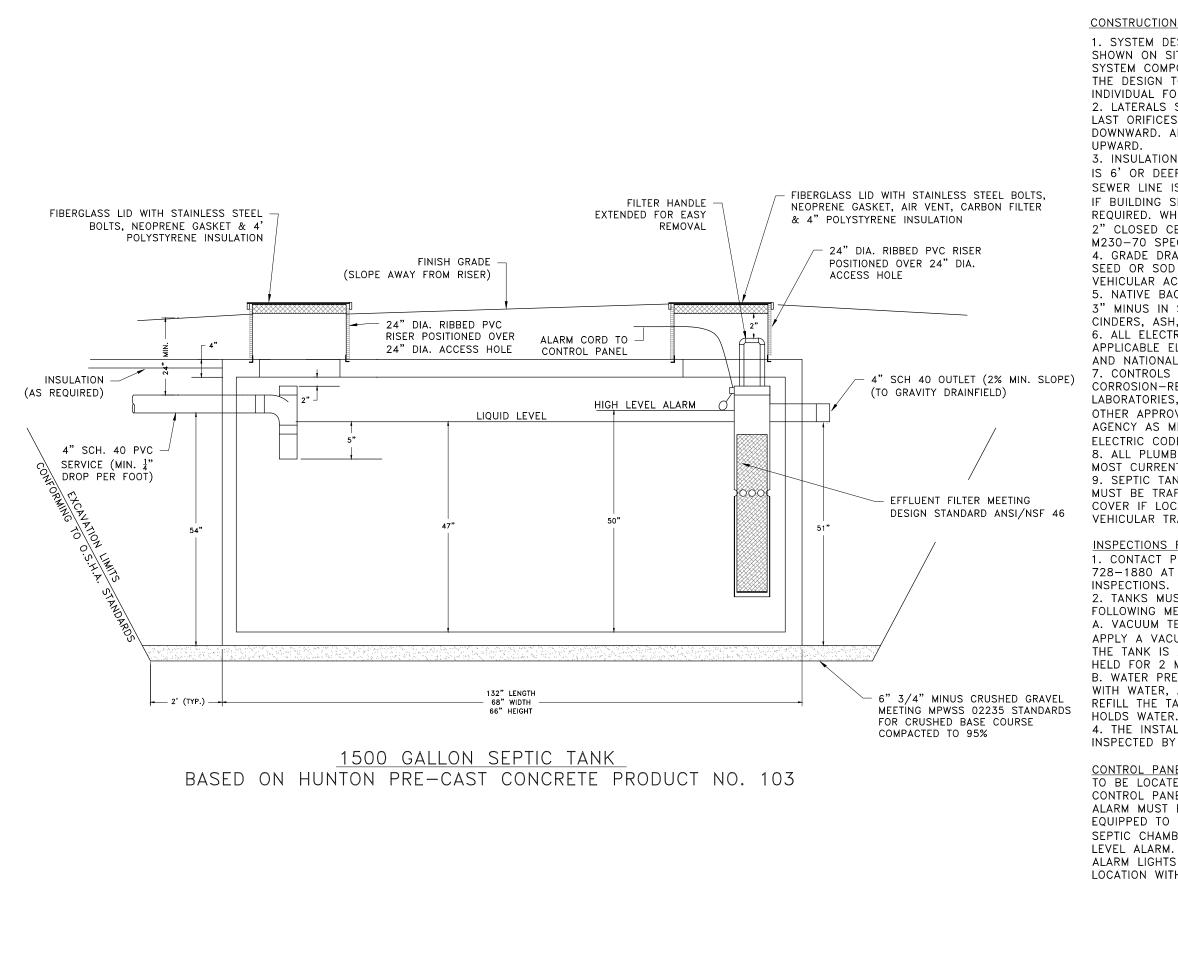
6. Flow Calculation (cfs)

Frequency of Storm Event	Pre-Development	Post-Development	Change (Post-Pre)
2-year	0.61	1.43	0.83
10-year	1.02	2.40	
100-year	1.61	3.79	

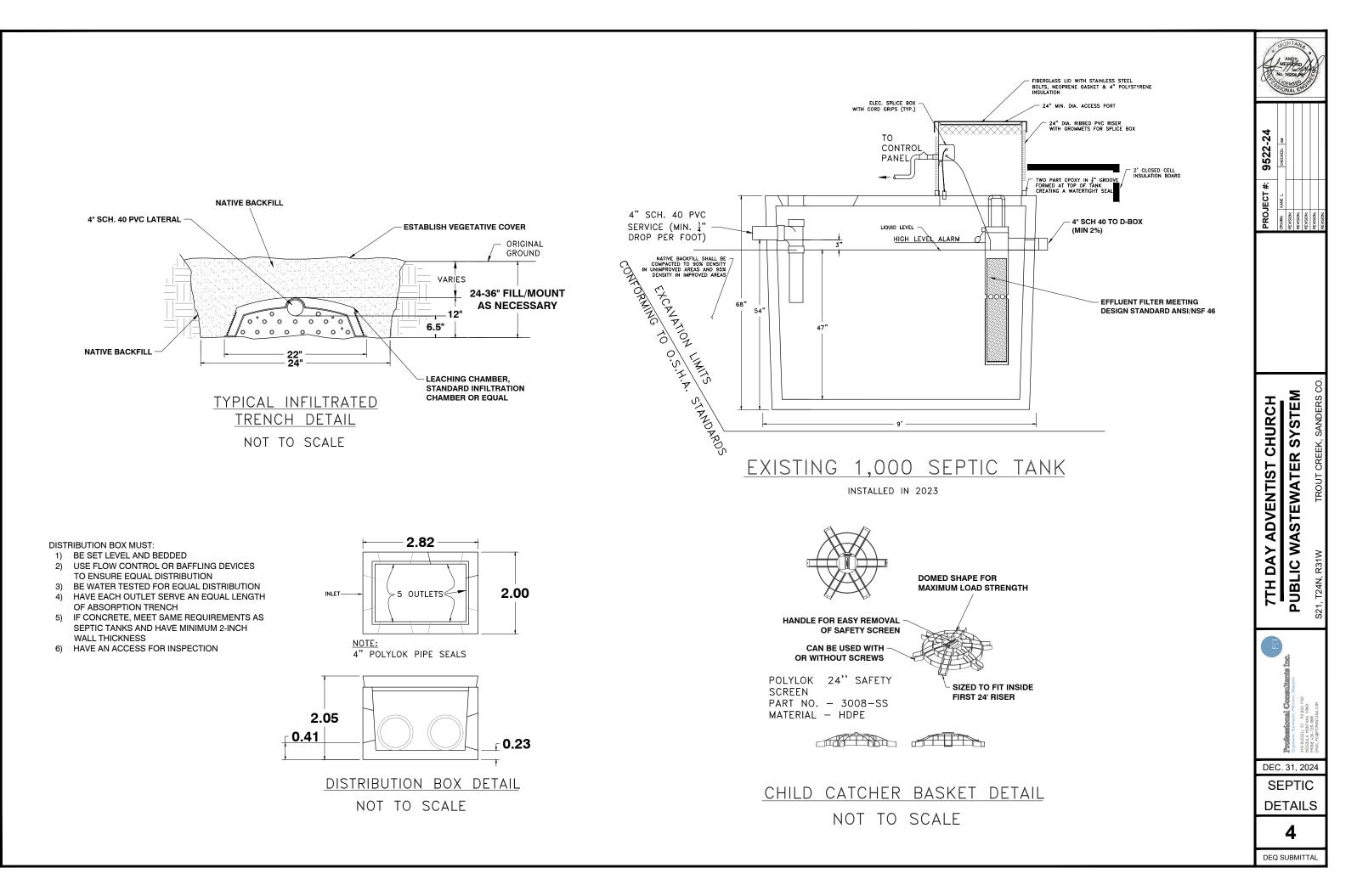
7. Volume Calculation (cf)

Frequency of Storm Event	Pre-Development	Post-Development	Change (Post-Pre)
2-year	2,193.90	5,165.29	2,971.38
10-year	3,673.43	8,648.65	4,975.22
100-year	5,790.14	13,632.21	7,842.06

8. Final Required Volume


DEQ 8 Final Minimum Pond Size (cf)
Simplified Storm Water Plan Minimum Pond Size (cf)

2,971.38
7,789.21


PUBLIC WASTEWATER

UPDATED PLANS

O&M MANUAL

CONSTRUCTION NOTES: 1. SYSTEM DESIGNED FOR COMPONENT LOCATION(S) AS SHOWN ON SITE LAYOUT DRAWING. MOVEMENT OF SYSTEM COMPONENTS OR SUBSTITUTIONS MAY REQUIRE THE DESIGN TO BE ALTERED. CONTACT QUALIFIED INDIVIDUAL FOR MODIFICATIONS TO THE SYSTEM. 2. LATERALS SHALL BE INSTALLED WITH FIRST AND 9522-24 LAST ORIFICES AND 1 ORIFICE EVERY 24 FEET FACING DOWNWARD, ALL OTHER ORIFICES ARE TO BE FACING 3. INSULATION REQUIREMENTS ARE AS FOLLOWS: IF LINE IS 6' OR DEEPER NO INSULATION IS REQUIRED; IF THE ¥ SEWER LINE IS >4' BUT <6' INSULATION IS REQUIRED; IF BUILDING SEWER IS LESS THAN 4' INSULATION IS PROJ PRAMN: REVISION: REVISION: REVISION: REVISION: REQUIRED. WHEN INSULATION IS REQUIRED IT SHALL BE 2" CLOSED CELL INSULATION BOARD MEETING AASHTO M230-70 SPECIFICATIONS. 4. GRADE DRAINFIELD AREA TO PREVENT PONDING. SEED OR SOD AREA AS DESIRED BY OWNER. VEHICULAR ACCESS TO AREA IS PROHIBITED. 5. NATIVE BACKFILL SHALL BE FREE DRAINING MATERIAL 3" MINUS IN SIZE. MATERIAL SHALL BE FREE OF CINDERS, ASH, REFUSE, ORGANIC OR FROZEN MATERIAL. 6. ALL ELECTRICAL COMPONENTS SHALL MEET ALL APPLICABLE ELECTRICAL CODES AT THE LOCAL, STATE AND NATIONAL LEVELS. 7. CONTROLS AND WIRING MUST BE CORROSION-RESISTANT AND LISTED BY UNDERWRITERS LABORATORIES, CANADIAN STANDARDS ASSOCIATION, OR OTHER APPROVED TESTING AND/OR ACCREDITING AGENCY AS MEETING THE REQUIREMENTS FOR NATIONAL SYSTEM CHURCH ELECTRIC CODE (NEC) CLASS I DIVISION 2 LOCATIONS. 8. ALL PLUMBING SHALL BE IN ACCORDANCE TO THE MOST CURRENT UNIFORM PLUMBING CODE. 9. SEPTIC TANK AND ASSOCIATED APPURTENANCES MUST BE TRAFFIC BEARING WITH CAST IRON RING AND WASTEWATER COVER IF LOCATED IN DRIVEWAY OR OTHER AREA WITH **ADVENTIST** VEHICULAR TRAFFIC. INSPECTIONS FOR SYSTEM 1. CONTACT PROFESSIONAL CONSULTANTS, INC (406) 728-1880 AT LEAST 48 HOURS IN ADVANCE FOR 2. TANKS MUST BE LEAK TESTED USING ONE OF THE ≻ FOLLOWING METHODS: DA PUBLIC A. VACUUM TESTING: SEAL THE EMPTY TANK AND APPLY A VACUUM TO 4 INCHES (100 MM) MERCURY. 7TH THE TANK IS APPROVED IF 90 PERCENT OF VACUUM IS HELD FOR 2 MINUTES; OR B. WATER PRESSURE TESTING: SEAL THE TANK, FILL WITH WATER, AND LET STAND FOR AT LEAST 24 HOURS. REFILL THE TANK. THE TANK IS APPROVABLE IF IT 4. THE INSTALLATION OF THE SYSTEM SHALL BE INSPECTED BY PROFESSIONAL CONSULTANTS, INC. CONTROL PANEL (RECOMMENDED) TO BE LOCATED WITH OWNER INPUT, HOWEVER, CONTROL PANEL MUST BE READILY ACCESSIBLE AND ALARM MUST BE ACKNOWLEDGEABLE. PANEL SHOULD BE EQUIPPED TO HANDLE THE FOLLOWING FLOAT: SEPTIC CHAMBER - ONE (1) REMOTE HIGH WATER ALARM LIGHTS ARE TO BE LOCATED IN A VISIBLE DEC. 31, 2024 LOCATION WITH AN AUDIBLE ALARM. SEPTIC DETAILS 3 DEQ SUBMITTAL

Operation and Maintenance Manual Seventh Day Adventist Church Located near Trout Creek, Sanders County, Montana May 2024

Introduction

This wastewater treatment system is to be operated and maintained in accordance with the manufacturer's instructions, unless otherwise outlined in this document.

The property owner of Tract A of COS 73, Seventh Day Adventist Church, is responsible for the maintenance and operation of the system's components (septic tank, sewer service lines, etc) or retain qualified person(s) to conduct all necessary maintenance and operation of the system.

For more information refer to the documentation below:

Contact Information

Service Representative: Andrey Bokav (425) 208-5894 Septic Tank Pumper: Sorlie Septic Services (406) 827-0888 Local Sanitarian: Jeremy Leavitt (406) 827-6909

System Summary

The system will have a 1,000 gallon and a 1,500 gallon septic tank to serve the individual buildings primary treatment needs. The effluent outfalls from these tanks will Y together before flowing to a distribution box. The drainfield will be gravity-fed; therefore, there will be a distribution box to distribute effluent throughout the entire drainfield area.

For a detailed summary of the system, refer to ENGINEERING DESIGN REPORT.

Operation and Maintenance

Maintenance Schedule

Monthly

- Visually inspect drainfield and tank for problems
- Inspect high water level float and alarm settings and operation

Annually

• Effluent filters should be inspected and replaced as recommended by a manufacturer

Every three to five years

- Inspect and pump septic tank
- The cleanouts on the drainfield laterals should be exposed, inspected and flushed

Maintenance Guide

Refer to "A Montana Homeowner's Guide to Septic Systems" by the Montana Department of Environmental Quality, Solid Waste Section, Septic Tank Pumper Program and manufacturer's instructions for operation and maintenance procedures.

Owner's Manual and O&M Manual

- Routine maintenance responsibilities will include the following:
 - The tank must be inspected every year and be pumped every four years at a minimum.
 - Effluent filters must be cleaned according to the manufacturer's specifications.
- Intermittent use and extended periods of no-use are not anticipated. In the event of non-use, the routine maintenance must be completed before continuing the use of the system.
- Visual inspections of the absorption field are recommended regularly.
- Safety concerns can be found in the manufacturer's documents attached.

Installation Manual

- The attached manufacturers installation manuals include the following:
 - Standard system components
 - Specifications for the systems' components
 - Schematics
 - Sequential installation instructions that identify and explain each installed component.
 - Instructions to call the service provider to go through the start up with them. This procedure is outlined in the attached O&M Manual

<u>As-built Plans</u>

• The contractor or owner must call Professional Consultants, Inc within 48 hours of construction completion to conduct inspections of the facilities. PCI will provide As-Built plans to Montana Department of Environmental Quality to be added to this document.

PUBLIC WATER

DEQ 1 REPORT PWS-5/PWS-6 DETAILS

Non-Transient Non-Community Water Supply Well Engineering Design Report

For

Trout Creek 7th Day Adventist Church

Sanders County, Montana

Prepared by:

Professional Consultants Inc. Unmatched Experience. Uncompromising Standards.

<u>3115 Russell St/ P.O. Box 1750</u> <u>Missoula, MT 59806</u> (406) 728-1880

December 2024

PCI Project No. 9522-24

Trout Creek 7th Day Adventist Church Public Water Supply Well PCI Project #: 9522-24

TABLE OF CONTENTS

Contents

NTRODUCTION	10
Chapter 1 – Submission of Plans	11
1.1 Engineer's Report	11
1.1.1 General Information	11
1.1.2 Extent of water system	11
1.1.3 Alternate plans	12
1.1.4 Water Use Data	12
1.1.6 Groundwater sources of supply	12
1.1.7 Sewage system available	13
Chapter 3 – Source Development	13
3.2.3.1 Well Location	13
3.2.3.2 Continued Protection	13

INTRODUCTION

The Seventh Day Adventist Church owns the property legally described as Plat 7A in NENW which is approximately a mile southeast of Trout Creek, MT. The property is in the NE ¼ NW ¼ of Section 21, Township 24 North, Range 31 West, Sanders County, Montana. The lot is approximately 5 acres in size. Currently, there is a church with a septic system, a functioning well and a driveway. The client wishes to add a school that will serve 20-30 students plus 1-3 faculty.

The current well does not meet construction requirements, a new one is proposed that will serve the school and church. The well will be classified as a Non-Transient Non-Community (NTNC) public water system because it will serve twenty-five (25) or more people at least sixty (60) days per year.

DEQ 3 – STANDARDS FOR WATER WORKS

Chapter 1 – Submission of Plans

1.1 Engineer's Report

1.1.1 General Information

a. Existing Water Works and Sewer Facilities

There is one existing, public water supply that serves the church. The well log shows that the well was completed on 9/1/1977. It was drilled to a total depth of 104 feet. The well showed static water level at 36 feet with a sustained yield of 50 gpm for 2 hours. This well will be used only for irrigation.

There is an existing wastewater treatment system that serves the church. The system consists of a septic tank and a subsurface drainfield. The existing septic system does not meet requirements and is proposed to be abandoned and replaced by the new wastewater treatment system that will serve both the school and the church.

b. Identification of the area to be served.

The NTNC public well is proposed to serve the church and school which will have 30-40 people attending church once a week and 20-30 students with 1-3 faculty four days per week. The school is anticipated to have (6) toilets, (1) urinal, (1) dishwashers, (5) sinks, (1) utility sink, (2) water fountains and (1) kitchen sink. The church has (5) toilets, (1) urinal on the wall, (1) shower with single head, (4) sinks, (1) kitchen sink and (1) $\frac{1}{2}$ " hose connection.

c. Name and address of the owner, developer, and official custodian.

Owner: Montana Conference Seventh Day Adventist 175 Canyon View Road Bozeman, MT 59715

The Trout Creek 7th Day Adventist Church will be the property owner. The developer for this project will be the church building committee. The owner intends to fund and operate the system and will adhere to the operation and maintenance procedures.

1.1.2 Extent of water system

a. Description and Nature of the extent of the area to be served.

The water system will provide water for the church and the proposed school both including bathrooms and a kitchen. The church has approximately 30-40 people who attend service once a week. The school is proposed to have 20-30 students with 1-3 faculty members. The school is anticipated to have (6) toilets, (1) urinal, (1) dishwashers, (5) sinks, (1) utility sink, (2) water fountains and (1) kitchen sink. The church has (5) toilets, (1) urinal on the wall, (1) shower with single head, (4) sinks, (1) kitchen sink and (1) $\frac{1}{2}$ " hose connection.

b. Provisions for extending the water works system to include additional areas.

Trout Creek 7th Day Adventist Church Public Water Supply Well PCI Project #: 9522-24 No extensions are planned for this proposed water supply system.

c. Appraisal of the future requirements for service, including existing and potential water supply needs.

Possible future expansion plans include a gymnasium for the school with no locker rooms.

1.1.3 Alternate plans

The wells in this area are the only available water supply.

1.1.4 Water Use Data

a. The estimated Population which will be served by the proposed water supply or expanded system.

At capacity, the system will serve approximately 75 people. There will be a maximum of 40 people attending church, 30 students and 5 faculty. The people that will be attending church only do so once a week. School will be in session 4 days a week for 9-10 months out of the year.

b. Present water consumption and the projected average and maximum daily demands or peak instant demand, where appropriate, used as the basis of design.

The basis of design is estimated from DNRC Planning Guide for Water Use for persons at a school and attending church. The system will have a projected future average daily demand of 1.36 gpm or 2.19 acre-feet per year with a maximum daily demand of 2.72 gpm or 4.39 acre-feet/year.

To determine the peak instant demand, the water supply fixture count was used from the AWWA M22. For the system, it is determined that the peak instantaneous water demand is estimated to be 37.7 gpm.

c. Present and/or estimated yield of the sources of supply.

The existing onsite well has a yield of 50 GPM. The proposed well is expected to have a yield of around 35 GPM. This is be verified with a pump test.

1.1.6 Groundwater sources of supply

a. Sites considered

The proposed well location is in the preferred location for the church so they may utilize a gravity drainfield.

b. Advantages of the site selected.

The site meets all the minimum setbacks required for a public well. It is in a location that does not have shallow surface water flows. It is in good proximity to the church and school to allow easy maintenance observation. This is the furthest location from the active train tracks that run neat the southwest corner of the property.

c. Elevations with respect to surroundings.

The well site is located on high, flat terrain.

Trout Creek 7th Day Adventist Church Public Water Supply Well PCI Project #: 9522-24

d. Sources of possible contamination

There are very few sources of possible contamination near the well. The primary one is the proposed public drainfield that is about 440 feet southwest. The proposed well is slightly removed from a direct down gradient flow path to the proposed drainfield. Highway 200 is approximately 180 feet northeast of the well. The Noxon Reservoir is the nearest surface water, which at its closest distance is approximately 1,670 feet northeast of the well.

1.1.7 Sewage system available

There is an existing system that currently serves the church. It includes a septic tank and gravityfed drainfield. Due to the existing septic systems non-compliance the system is proposed to be abandoned. The proposed sewage system will serve the school and the church. The sewage system will consist of a gravity-fed drainfield.

Chapter 3 – Source Development

3.2.3.1 Well Location

The proposed public well location is at least 100 feet from structures used to convey or retain industrial, storm or sanitary waste and state and federal highway rights of way. There is one existing septic system within the property's boundaries. The well is at least over 50 feet from all proposed septic tanks and sewer lines. Highway 200 is the closest federal Right of Way which is approximately 110 feet northeast.

3.2.3.2 Continued Protection

As a public well, a 100 ft isolation zone will be established around the exterior of the well. The well isolation zone remains entirely within the property's boundaries. Continued protection of the well site from potential sources of contamination will be provided through ownership.

(Based on AW	WA M22 Manual, Second B	Edition)	
Facility Name	7th Day Adventist Churc	h	
Building address or number	3020 MT Highway 200, 1	Frout Creek, MT	
Residential or Non-Residential	Non-Residential	•	
Minimum Pressure (psi)	35	•	** this is typically 35 psi
Fixture or Appliance	Fixture Value (at 60 psi)	Number of Fixtures	Subtotal Fixture Value
Toilet (tank) Toilet (flush valve) Urinal (wall or stall) Urinal (flush valve) Bidet Shower (single head) Sink (lavatory) Kitchen Sink Utility Sink Dishwasher Bathtub Clothes Washer Hose connections (with 50 ft of hose) 1/2 in. 5/8 in.	$ \begin{array}{r} 4 \\ 35 \\ 16 \\ 35 \\ 2 \\ 2.5 \\ 1.5 \\ 2.2 \\ 4 \\ 2 \\ 8 \\ 6 \\ \end{array} $	11 2 1 9 2 1 1 1 1	$ \begin{array}{r} 44 \\ 0 \\ 32 \\ 0 \\ 0 \\ 2.5 \\ 13.5 \\ 4.4 \\ 4 \\ 2 \\ 0 \\ 0 \\ 0 \end{array} $
3/4 in. Miscellaneous Bedpan washers Drinking fountains Dental units Combined Fixture Value Demand (gpm) Pressure Adjustment Factor Total Adjusted demand (gpm)	12 10 2 2	2	0 0 4 0 111.4 51 0.74 37.7

Water Demand Estimate Using Fixture Values

WELL SPECIFICATIONS DETAILS

NON-COMMUNITY PUBLIC WATER SUPPLY - TC 7TH DAY ADVENTIST CHURCH

LOCATED IN SECTION 21, T.24N., R.31W., P.M.M.,

SANDERS COUNTY, MONTANA

WELL CONSTRUCTION NOTES & SPECIFICATIONS

1. DEQ 3.2 - WELL SHALL BE CONSTRUCTED BY A WATER WELL CONTRACTOR LICENSED IN THE STATE OF MONTANA, WELL SHALL BE CONSTRUCTED IN ACCORDANCE WITH TITLE 37, CHAPTER 43, MCA AND TITLE 36, CHAPTER 21, ARM

2. DEQ 3.2.2.1 - THE WELL SHALL BE DISINFECTED IN ACCORDANCE WITH ARM 36.21.662(1) PRIOR TO AND AFTER PLACEMENT OF PERMANENT PUMPING EQUIPMENT. MORE THAN 72 HOURS AFTER DISINFECTION, TWO OR MORE WATER SAMPLES MUST BE SUBMITTED TO A LABORATORY CERTIFIED BY THE DEPT OF PUBLIC HEALTH AND HUMAN SERVICES FOR MICROBIOLOGICAL ANALYSIS WITH SATISFACTORY RESULTS REPORTED TO MDEQ PRIOR TO PLACING THE WELL INTO SERVICE

3. DEQ 3.2.2.2 - THE WELL SHALL BE EXAMINED FOR APPLICABLE PHYSICAL AND CHEMICAL CHARACTERISTICS BY TESTS OF A REPRESENTATIVE SAMPLE IN A LABORATORY CERTIFIED BY THE DEPT OF PUBLIC HEALTH AND HUMAN SERVICES FOR MICROBIOLOGICAL ANALYSIS WITH SATISFACTORY RESULTS REPORTED TO MDEQ. SAMPLES MUST BE COLLECTED AT THE CONCLUSION OF THE TEST PUMPING PROCEDURE PRIOR TO DISINFECTION AND EXAMINED AS SOON AS PRACTICAL. SAMPLE RESULTS FOR CONSTITUENTS OF ARM 17.38.216, INCLUDING NITRATE AND TDS OR CONDUCTIVITY SAMPLING, MUST BE SUBMITTED TO MDEQ FOR REVIEW AND APPROVAL TO DEMONSTRATE COMPLIANCE WITH TITLE 17, CHAPTER 38, SUB-CHAPTER 2, ARM, PRIOR TO PLACING THE WELL INTO SERVICE. FIELD DETERMINATIONS OF PHYSICAL AND CHEMICAL CONSTITUENTS OR SPECIAL SAMPLING PROCEDURES MAY BE REQUIRED BY MDEQ

4. DEQ 3.2.4.1 - YIELD AND DRAWDOWN TESTS MUST BE PERFORMED ON THE WELL AFTER CONSTRUCTION OR SUBSEQUENT TREATMENT AND PRIOR TO PLACEMENT OF THE PERMANENT PUMP. TEST PUMP CAPACITY AT MAXIMUM NECESSARY EQUIPMENT CAPABLE OF PUMPING THE WELL AND MEASURING THE PUMP RATE AT A MINIMUM FLOW RATE TO BE SPECIFIED BY THE ENGINEER (1.5 X DESIGN RATE FOR A PERIOD OF 24 HOURS, OR UNTIL A STABILIZED DRAWDOWN HAS BEEN MAINTAINED FOR AT LEAST SIX (6) HOURS. PUMP TEST PERIOD MAY NEED TO BE AS LONG AS 72 HOURS, AS REQUIRED BE DNRC, DATA OF THE FOLLOWING AT ONE-HOUR INTERVALS OR LESS AS MAY BE REQUIRED BY MDEC: PUMPING RATE, PUMPING WATER LEVELS, STATIC WATER LEVEL, WATER RECOVERY RATE AND LEVELS, AND TIME OF STARTING AND ENDING EACH TEST CYCLE. CONSULT ENGINEER PRIOR TO BIDDING. DATA COLLECTION MUST BEGIN AT TIME ZERO. THE TEST MAY BE TERMINATED IF STABILIZED DRAWDOWN OCCURS FOR AT LEAST EIGHT HOURS DUBING THE TEST, STABILIZED DRAWDOWN IS DEFINED AS A WATER LEVEL THAT DOES NOT FLUCTUATE PLUS OR MINUS 0.5 FEET FOR EVERY 100 FEET OF DRAWDOWN AT THE DESIGN PUMPING RATE. WHEN SUFFICIENT HISTORIAL INFORMATION IS AVAILABLE, A STEP DRAWDOWN TEST MAY BE APPROVED BY MDEQ.

DEQ 3.2.4.2 - TEST RESULTS WILL BE SUBMITTED TO MDEQ. IN ADDITION, THE AQUIFER PUMP TESTING RESULTS SHALL BE SUBMITTED TO THE MONTANA BUREAU OF MINES AND GEOLOGY (MBMG) ON THE MONTANA DEPARTMENT OF NATURAL RESOURCES AND CONSERVATION FORM 633 AS CAN BE FOUND ON THE DNRC WEBSITE

6. DEQ 3.2.4.3 - GEOLOGICAL DATA MUST BE DETERMINED IN ACCORDANCE WITH ARM 36.21.667. SAMPLES MUST BE TAKEN AT 5 INTERVALS AND AS SPECIFIED IN THE ARM. DRILLER SHALL COORDINATE SAMPLING WITH THE ENGINEER. UPON COMPLETION, A COPY OF THE WELL LOG MUST BE SUBMITTED TO THE ENGINEER AND MDEQ., AS APPLICABLE, AND BE SUPPLEMENTED WITH A DRILLER'S LOG. AND ACCURATE GEOLOGICAL LOCATION SUCH AS LATITUDE AND LONGITUDE OR GIS COORDINATES AS DETERMINED BY GPS TO AN ACCURACY OF +/- 25 FEET.

DEQ 3.2.5.2 - THE MINIMUM PROTECTED DEPTHS OF DRILLED WELLS MUST PROVIDE WATERTIGHT CONSTRUCTION TO SUCH DEPTH AS MAY BE REQUIRED BY MDEQ, TO EXCLUDE CONTAMINATION AND SEAL OFF FORMATIONS THAT ARE OR MAY BE CONTAMINATED OR YIELD UNDESIRABLE WATER. WELLS SHALL HAVE UNPERFORATED CASING TO A MINIMUM DEPTH OF 25 FEET OR CONTINUOUS DISINFECTION MUST BE PROVIDED. IF THE WELL IS DETERMINED TO BE DRAWING FROM A WATER TABLE AQUIFER WITHIN 25 FEET OF THE GROUND SURFACE. THE CONTRACTOR SHALL NOTIEY THE DESIGN ENGINEER IMMEDIATELY

SHOE IN ACCORDANCE WITH ARM 36.21.640 EQUIPPED WITH A DRIVEN, AND HAVE WELDED JOINTS IN ACCORDANCE WITH ARM 36.21.644 WHEN DRIVEN, AND HAVE WELDED JOINTS IN ACCORDANCE WITH ARM 36.21.642.

9. DEQ 3.2.5.4 - PLASTIC WELL CASING MUST BE IN ACCORDANCE WITH ARM 36.21.645 AND ARM 36.21.646

10. 3.2.5.5 - PACKERS MUST BE OF MATERIAL THAT WILL NOT IMPART TASTE, ODOR, TOXIC SUBSTANCE OR BACTERIAL CONTAMINATION TO THE WELL WATER. PACKERS SHALL NOT BE USED ON ANY WELL UNLESS APPROVED BY THE ENGINEER.

DEQ 3,2,5,7 - THE PERMANENT WELL CASING SHALL BE SEALED IN ACCORDANCE WITH ARM 36,21,654 THOUGH 36.21.660 TO A DEPTH OF 25 FEET WITH HEAVY BENTONITE WATER SLURRY OR CEMENT GROUT TO PREVENT SURFACE CONTAMINATION. THE HEAVY BENTONITE WATER SLURRY METHOD IS PREFERRED. THE CASING SHALL BE PROVIDED WITH CENTRALIZERS IN ACCORDANCE WITH ARM 36.21.648. THE TEMPORARY CASING SHALL BE WITHDRAWN AS GROUT IS APPLIED.

12. DEQ 3.2.5.8 - THE UPPER TERMINAL PERMANENT, WELL CASING SHALL BE IN ACCORDANCE WITH ARM 36.21.647. THE WELL MUST NOT BE CONSTRUCTED IN AN AREA SUBJECT TO FLOODING. PROVISIONS SHALL BE MADE TO PREVENT DAMAGE OR TAMPERING TO THE WELL. TO PREVENT TAMPERING, SECURE THE WELL CAP WITH A CHAIN AND PAD LOCK. TO PREVENT DAMAGE, INSTALL 4" STEEL BOLLARDS FILLED WITH CONCRETE AND PLACE WITHIN 6" CONCRETE CURBED TRAFFIC ISLAND

13. DEQ 3,2,5,9 - THE WELL SHALL BE DEVELOPED IN ACCORDANCE WITH ARM 36,21,653

14. DEQ 3.2.5.10 - TEMPORARY CAPPING REQUIREMENTS MUST BE IN ACCORDANCE WITH ARM 36.21.661.

15. DEQ 3.2.6.1 - IN DRILLED WELLS THAT PENETRATE AN AQUIFER EITHER WITHIN A CONSOLIDATED OR CONFINING FORMATION, SEALING OF THE CASING MUST CONFORM WITH ONE OF THE PROCEDURES DESCRIBED IN DEQ CIRCULAR 3 SECTION 3.2.6.1.

16. DEQ 3.2.6.2 - FLOWING WELLS. WHEN FLOWING WATER IS ENCOUNTERED IN THE WELL, AN UNPERFORATED WELL CASING MUST EXTEND INTO THE CONFINING STRATUM OVERLYING THE ARTESIAN ZONE. THE CASING MUST BE ADEQUATELY SEALED INTO THE CONFINING STRATUM SO AS TO PREVENT SURFACE AND SUBSURFACE LEAKAGE FROM THE ARTESIAN ZONE. IF THE WELL FLOWS AT LAND SURFACE, IT MUST BE EQUIPPED WITH A CONTROL VALVE SO THAT THE FLOW CAN BE COMPLETELY STOPPED. THE WELL MUST BE COMPLETED WITH PACKERS OR APPROPROATE SEALING MATERIAL THAT WILL FLIMINATE LEAKAGE ABOUND THE WELL CASING

17. DEQ 3.2.6.5 - GRAVEL PACK WELLS. GRAVEL PACK MUST BE WELL ROUNDED PARTICLES, 95 PERCENT SILICEOUS MATERIAL, THAT ARE SMOOTH AND UNIFORM, FREE OF FOREIGN MATERIAL, PROPERLY SIZED, WASHED AND THEN DISINFECTED IMMEDIATELY PRIOR TO OR DURING PLACEMENT, GRAVEL PACK MUST BE PLACED IN ON UNIFORM CONTINUOUS OPERATION, AND PROTECTION FROM LEAKAGE OF GROUT INTO THE GRAVEL PACK OR SCREEN MUST BE PROVIDED. PERMANENT INNER AND OUTER CASINGS MUST MEET REQUIREMENTS OF SECTION 3.2.5.3 AND 3.2.5.4.

ADDITIONAL WELL CONSTRUCTION NOTES & SPECIFICATIONS

1. SCREENS MUST BE CONSTRUCTED OF MATERIALS RESISTANT TO DAMAGE BY CHEMICAL ACTION OF GROUNDWATER OR CLEANING OPERATIONS, HAVE SIZE OF OPENINGS BASED ON SIEVE ANALYSIS OF FORMATION AND/OR GRAVEL PACK MATERIALS, HAVE SUFFICIENT LENGTH AND DIAMETER TO PROVIDE ADEQUATE SPECIFIC CAPACITY AND LOW APERTURE ENTRANCE VELOCITY WHICH MAY NOT EXCEED 0.1 FEET PER SECOND. SCREENS MUST ALSO BE INSTALLED SO THAT THE PUMPING WATER LEVEL REMAINS ABOVE THE SCREEN UNDER ALL OPERATING CONDITIONS. WHERE APPLICABLE, SCREENS MUST BE DESIGNED AND INSTALLED TO PERMIT REMOVAL OR REPLACEMENT WITHOUT ADVERSELY AFFECTING WATER-TIGHT CONSTRUCTION OF THE WELL, AND MUST BE PROVIDED WITH A BOTTOM PLATE OR WASHDOWN BOTTOM FITTING OF THE SAME MATERIAL AS THE SCREEN.

2. HEAVY BENTONITE WATER SLUBBY SHALL BE A MIXTURE OF 1/2 POUND BENTONITE PER GALLON OF CLEAR WATER. CEMENT GROUT SHALL BE A MIXTURE OF ONE BAG OF CEMENT CONFORMING TO ASTM C-150 (94 LBS) AND 5-6 GALLONS OF WATER. IF CEMENT GROUT IS USED, A HOLE PLUG SHALL BE USED. HOLE PLUG METHOD SHALL BE SUBMITTED AND APPROVED BY THE ENGINEER PRIOR TO USE ON-SITE. THE MIXTURE. METHOD OF MIXING AND CONSISTENCY OF GROUT SHALL BE APPROVED BY THE ENGINEER.

3. A SUITABLE RETAINER, PACKER OR PLUG SHALL BE PROVIDED AT THE BOTTOM OF THE GROUTED SECTION SO THAT GROUT WILL WILL ENSURE THROUGH INTO THE BOTTOM OF THE WELL. THE GROUTING SHALL BE DONE CONTINUOUSLY AND IN SUCH A MANNER AS WILL ENSURE THE ENTIRE FILLING OF THE ANNULAR SPACE IN ONE OPERATION. THE CASING MUST BE PROVIDED WITH SUFFICIENT GUIDES WELDED TO THE CASING TO PERMIT UNOBSTRUCTED FLOW AND UNIFORM THICKNESS OF GROUT.

THE CONTRACTOR SHALL TAKE PRECAUTIONS AS ARE NECESSARY OR AS MAY BE REQUIRED PERMANENTLY TO PREVENT CONTAMINATED WATER OR WATER HAVING UNDESIRABLE PHYSICAL OR CHEMICAL CHARACTERISTICS FROM ENTERING THROUGH THE OPENING MADE BY THE CONTRACTOR IN DRILLING THE WELL OR THROUGH THE STRATUM FROM WHICH THE WELL IS TO DRAW ITS SUPPLY. HE SHALL ALSO TAKE ALL NECESSARY PRECAUTIONS DURING THE CONSTRUCTION PERIOD TO PREVENT CONTAMINATED WATER, GASOLINE, ETC., FROM ENTERING THE WELL EITHER THROUGH THE OPENING OR BY SEEPAGE THROUGH THE GROUND SURFACE. IN THE EVENT THAT THE WELL BECOMES CONTAMINATED OR THAT WATER HAVING UNDESIRABLE PHYSICAL OR CHEMICAL CHARACTERISTICS ENTERS THE WELL HE SHALL, AT HIS EXPENSE, PERFORM SUCH WORK OR SUPPLY SUCH CASINGS, SEALS STERILIZING AGENTS OR OTHER MATERIAL AS MAY BE NECESSARY TO ELIMINATE THE CONTAMINATION OR SHUT OFF THE UNDESIRABLE WATEF

5. SLOPE GROUND AWAY FROM WELL HEAD TO PREVENT PONDING AND POSSIBLE CONTAMINATION.

6. CLEAN POTABLE WATER SHALL BE USED IN ALL DRILLING FLUIDS AND ADDITIVES USED IN DRILLING OPERATIONS SHALL BE APPROVED BY THE NATIONAL SANITATION FOUNDATION (NSF) OR A SIMILAR ANSI ACCREDITED LABORATORY/ORGINIZATION

7. UPON COMPLETION OF THE WELL, BEFORE CONDUCTING THE YIELD AND DRAWDOWN TESTS, THE CONTRACTOR SHALL DEVELOP THE WELL BY SUCH METHODS AS WILL EFFECTIVELY EXTRACT FROM THE WATER-BEARING FORMATION THE MAXIMUM PRACTICAL QUANTITY OF SAND, DRILLING MUD AND OTHER FINE MATERIALS IN ORDER TO BRING THE WELL TO MAXIMUM YIELD PER FOOT OF DRAWDOWN AND TO A SAND-FREE CONDITION. COMPRESSED AIR, SURGE PLUNGERS, HIGH-VELOCITY JETTING EQUIPMENT AND PUMPS MAY BE USED FOR THE DEVELOPMENT WORK. TOWN INSUED AIR, USE TECHNEL FEMILEURI, HILLY ALLEONT ADDRESS NOT CAUSE UNDUE SETTLEMENT AND DISTURBANCE OF THE STRATA ABOVE THE WATER-BEARING FORMATION NOR DISTURB THE SEAL AROUND THE WELL CASING AND THEREBY REDUCE THE SANITARY PROTECTION OTHERWISE AFFORDED BY SUCH SEAL. DEVELOPMENT OF THE WELL SHALL BE CONTINUED UNTIL WATER PUMPED FROM THE WELL AT THE MAXIMUM TEST PUMPING BATE IS CLEAR AND FREE OF THE WATER SHALL BE CONSIDERED SAND-FREE WHEN NO SAMPLES CONTAIN MORE THAN 2 PPM OF SAND BY WEIGHT

IN DRILLED WELLS THAT PENETRATE AN AQUIFER OVERLAIN BY UNCONSOLIDATED FORMATIONS SUCH AS SAND AND GRAVEL WITHOUT SIGNIFICANT CLAY BEDS, AN UNPERFORATED WELL CASING MUST EXTEND TO AT LEAST THREE INCHES GREATER THAN THE NOMINAL SIZE OF THE PERMANENT CASING MUST EXCEED TO AT LEAST 25 FEET BELOW LAND SURFACE. THE ANNULAR SPACE BETWEEN THE UPPER DRILL HOLE AND THE WELL CASING MUST BE KEPT AT LEAST ONE-HALF FULL WITH BENTONITE SLURRY THROUGHOUT THE DRIVING OF THE PERMANENT CASING INTO THE AQUIFER. AFTER THE PERMANENT CASING IS SET IN ITS FINAL POSITION, THE REMAINING ANNULAR SPACE MUST BE FILLED TO LAND SURFACE WITH APPROPIATE SEALING MATERIAL. IF THE OVERSIZED DRILL HOLE IS EXTENDED TO THE SAME DEPTH AS THE PERMANENT CASING, A SUITABLE BRIDGE MUST BE INSTALLED BETWEEN CASING AND THE DRILL HOLE AT A POSITION DIRECTLY ABOVE THE PRODUCTION QUIFER. THE REMAINING ANNULAR SPACE MUST BE COMPLETELY FULLED AND SEALED TO LAND SUBFACE WITH APPROPRIATE SEALING MATERIAL. IF TEMPORABY CASING IS USED TO MAINTAIN THE OVERSIZED DRILL HOLE, THE ANNULAR SPACE MUST BE KEPT FULL WITH APPROPRIATE SEALING MATERIAL AS THE TEMPORARY CASING IS BEING WITHDRAWN.

IN DRILLED WELLS THAT PENETRATE AN AQUIFER OVERLAIN BY CLAY OR OTHER UNCONSOLIDATED DEPOSITS SUCH AS SAND AND GRAVEL IN WHICH SIGNIFICANT (AT LEAST 6 FEET THICK) INTERBEDS OF CLAY ARE PRESENT, THE WELL CASING MUST BE TERMINATED IN SUCH CLAY STRATA, PROVIDED THAT THE CASING BE SEALED IN SUBSTANTIALLY THE SAME MANNER AS IS REQUIRED IN THE CASE OF CONSOLIDATED FORMATIONS.

GENERAL NOTES

1. THE WORK TO BE DONE INCLUDES THE FURNISHING OF ALL LABOR, MATERIAL, TRANSPORTATION, TOOLS, SUPPLIES, EQUIPMENT AND APPURTENANCES, UNLESS SPECIFICALLY EXCEPTED, NECESSARY FOR THE COMPLETE AND SATISFACTORY CONSTRUCTION SANITARY PROTECTION, AND TESTING OF THE PROPOSED WELL.

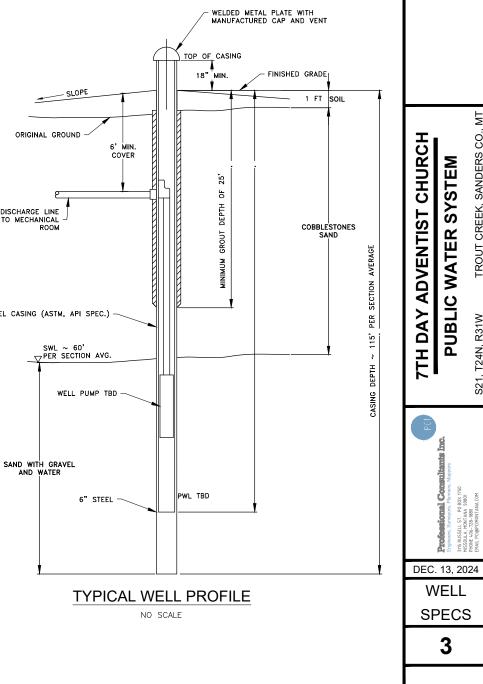
2. THE OWNER HAS DESIGNATED PCI AS HIS REPRESENTATIVE. THE ENGINEER MAY DESIGNATE A SUB-CONSULTANT, TO BE IDENTIFIED AT THE START OF CONSTRUCTION.

3. DURING CONSTRUCTION IT SHALL BE THE RESPONSIBILITY OF THE CONTRACTOR TO ACQUIRE NECESSARY UTILITY LOCATES TWO BUSINESS DAYS PRIOR TO CONSTRUCTION AND PROTECT EXISTING UNDERGROUND AND OVERHEAD UTILITY LINES.

4. THE CONTRACTOR SHALL NOTIFY THE ENGINEER IMMEDIATELY SHOULD ANY CONFLICTS EXIST BETWEEN THE PLANS AND WHAT IS FOUND IN THE FIELD.

5. THE CONTRACTOR SHALL OBTAIN ALL THE NECESSARY PERMITS, AT HIS EXPENSE, TO COMPLETE THE PROPOSED WORK AND SHALL COMPLY WITH ALL LOCAL, STATE, AND FEDERAL REGULATIONS.

6. CONTRACTOR SHALL PROTECT ALL ADJACENT IMPROVEMENTS (SIGNS, DRAINFIELDS, ROADWAYS, PARKING LOTS, UTILITIES, ETC) FROM DAMAGE AND EROSION. ALL DISTURBED AREAS SHALL BE RESTORED TO THEIR ORIGINAL CONDITION.


ALL COMPONENTS OF THIS WATER SYSTEM SHALL BE INSTALLED IN ACCORDANCE WITH MANUFACTURERS' RECOMMENDED INSTALLATION PROCEDURES, UNLESS OTHERWISE SPECIFIED IN THESE PLANS OR BY THE ENGINEER.

8. CONTRACTOR SHALL SUBMIT SHOP DRAWINGS, MATERIAL CERTIFICATIONS, O&M AND WARRANTY DOCUMENTS TO THE OWNERS FOR ALL PARTS INSTALLED

1. THE WELL CONTRACTOR SHALL PROVIDE THE FOLLOWING: TEST PUMP, POWER SOURCE, FUEL, FLOW MEASURING METER, PUMP CAPACITY-HEAD CHARACTERISTICS, AND DEPTH OF TEST PUMP SETTING. THE CONTRACTOR SHALL BE RESPONSIBLE TO ENSURE SMOOTH OPERATION OF PUMP THROUGHOUT ALL TESTING

2. THE ENGINEER SHALL PROVIDE AN ELECTRONIC WATER LEVEL MEASURING DEVICE, AND SHALL BE RESPONSIBLE FOR COLLECTING DATA AS FOLLOWS: STATIC WATER LEVEL WATER RECOVERY RATE AND LEVEL AND STARTING AND ENDING TIME OF EACH TEST CYCLE. WATER LEVEL MEASUREMENTS SHALL BE TAKEN SO AS TO PROVIDE TEN EVENLY SPACED DATA POINTS PER LOG CYCLE OF TIME, BUT IN NO CASE SHALL IT BE LESS THAN ONE-HOUR INTERVALS. DATA COLLECTION MUST BEGIN AT TIME ZERO. THE TEST MAY BE TERMINATED IF STABILIZED DRAWDOWN OCCURS FOR AT LEAST EIGHT HOURS DURING THE TEST. AS STEP DOWN TEST SHALL NOT BE SUED UNLESS SPECIALLY APPROVED BY DESIGN ENGINEER

3. TEST RESULTS MUST BE REPORTED TO MDEQ.

6" STEEL CASING (ASTM, API SPEC.)

	7 PER	SECI	ION
Ī		WELL	PUN
	H GR WATEF		
			6"

WELL TESTING & RECORD REQUIREMENTS

9522-24

¥

PROJ PRAMI: PREVISION: REVISION: REVISION: REVISION: REVISION:

Question	Responses	Score (points)
1. Type of subsurface water source.	Well	0
	Horizontal Well *	40
	Spring	40
† For purposes of the PA, "horizontal wells" includes infiltra	tions galleries.	
2. History or suspected outbreak of Giardia or other	No	0
pathogenic organisms associated with surface water with	Yes	40
the current system configuration.		
3. Number of <i>E. coli</i> -positive distribution samples in the	None	0
last three years.	One	5
	Two or more	10
4. Number of <i>E. coli</i> -positive source samples in the last	None	0
three years	One	20
	Two or more	30
5. Number of DEQ-verified complaints about turbidity.	None	0
	One or more	5
6. Hydrogeological Features: horizontal distance between	>250 feet	0
source and the closest surface water.	175-250 feet	10
	100-174 feet	20
	<100 feet	40
7. Does the well construction meet all three criteria? The	Yes	0
well is (1) cased to at least top of the water bearing unit;	No	15
(2) annular seal extends from ground level to a minimum	Unknown	15
of 25 feet in depth; and (3) the borehole diameter is at		
least three inches greater than the casing outside		
diameter from ground level to 25 feet depth.		
8. Well intake construction: depth below ground surface	>100 feet	0
to the top of the well screen or open bottom casing.	50-100 feet	5
	25-49 feet	10
	0-24 feet	15
	Unknown	15
9. Static water level depth below ground surface.	>100 feet	0
	50-100 feet	5
	25-49 feet	10
	0-24 feet	15
	Unknown	15

Table of Preliminary Assessment Questions, Responses and Scores

Total = 15

Public Water Supply System PWS-6 Report Source Water Delineation

Non-Community Non-Transient Public Water Supply

For

7th Day Adventist Church Water System

Trout Creek, Sanders County, Montana

Prepared by:

Professional Consultants Inc. Unmatched Experience. Uncompromising Standards.

<u>3115 Russell Street/P.O Box 1750</u> <u>Missoula, MT 59806</u> (406) 728-1880

December 2024

PCI Project No. 9522-24

TABLE OF CONTENTS

CTION	1
PURPOSE	1
BACKGROUND INFORMATION	2
The Community	2
Geographic Setting	2
Public Water Supply	2
Water Quality	2
DELINEATION OF GROUND WATER SOURCES	3
Hydrogeologic Conditions	3
Conceptual Model & Assumptions	3
Well Information	3
Aquifer Properties	3
INVENTORY	4
Control Zone	
Inventory Region	4
Recharge Region	4
SUSCEPTIBILITY	5
LIMITATIONS	6
REFERENCES	7
	PURPOSE BACKGROUND INFORMATION The Community Geographic Setting Public Water Supply Water Quality DELINEATION OF GROUND WATER SOURCES Hydrogeologic Conditions Conceptual Model & Assumptions Well Information Aquifer Properties INVENTORY Control Zone Inventory Region Recharge Region SUSCEPTIBILITY LIMITATIONS

TABLE OF APPENDICES

- Appendix A: Site Layout Well Location, Control Region
- Appendix B: Natural Resource Information System Inventory Region

INTRODUCTION

Delineation and assessment of Source Water Protection (SWP) areas is defined in the 1996 Federal Safe Drinking Water Act Amendments. This delineation and assessment report is intended to meet the technical requirements of the Montana Source Water Protection Program (DEQ 1999) and the Federal Safe Drinking Water Act (SDWA) Amendments of 1996 (P.L. 104-182). This Source Water Protection Delineation report has been prepared in support of permitting the non-transient non-community public water supply (PWS) system supplied by groundwater. The property is located off Highway 200, in Sanders County, Montana, and is owned by Montana Conference of Seventh Day Adventist.

Water system owner:

Trout Creek 7th Day Adventist Church 3020 MT Highway 200 Trout Creek, MT 59874

The report author and contact person:

Kane Leithead Landmark Consulting LLC PO Box 7233 Sheridan, Wy, 82801 307-461-3858

1.0 PURPOSE

The purpose of this delineation and assessment report is to assess potential threats to the water supply for Trout Creek's Seventh Day Adventist Church using information obtained from published reports of nearby existing site conditions. Source water protection areas are areas that contribute water to the aquifer through recharge which are delineated or identified on a map. Assessment involves identifying locations or regions in source water protection areas where contaminants may be generated, stored, or transported and then determining the potential for contamination of drinking water by these sources.

TC 7 th Day Adventist Church	PWS-6 Report – Source Water Delineation
PCI Project #: 9522-24	1

2.0 BACKGROUND INFORMATION

2.1 The Community

The church is off Highway 200 in Trout Creek. The property is in Section 21, Township 24 North, Range 31 West, Sanders County, Montana. The parcel is owned by Montana Conference of Seventh Day Adventist.

The property has an existing church that has 30-40 attendees once a week. A school is proposed to have 20-30 students and 1-3 faculty members that will attend school four days a week. There is currently a septic system and well that serves the church which is proposed to be abandoned due to its noncompliance. A new well and public sewer system is proposed that will serve both the school and church.

2.2 Geographic Setting

The property is located approximately 1,850 feet southwest of Noxon Reservior. The USGS Hydrologic Units code for the surface water sources near the property is 17010213; however, the well will be groundwater sourced. The neighboring single-family homes and commercial buildings in the area are on their own water and septic systems.

The land cover in the area consists primarily of residential and commercial development with coniferous trees. Based on the NRCS soil report, the property consists primarily of Bonnash gravelly ashy silt loam. Annual precipitation in Trout Creek, MT is approximately 26.8 inches per year, most of which falls as snowfall.

The location of the proposed public water supply well is in the front of the property.

2.3 Public Water Supply

This assessment is for the proposed public water supply well that has not obtained official approval from DEQ. The population served is estimated at a maximum of 75 individuals based on the church and school's occupancy. The system will serve the church and proposed school which both include restrooms and a kitchen. There will be a total of 2 service connections. It is assumed that a 35-gpm source will be adequate since the maximum daily demand was calculated to be 2.08 gpm for the system. The existing well was drilled to a total depth of 104 feet, static water level of 36 feet, pump water level of 41 feet, and yield of 50 gpm. This allows for an accurate estimation of the proposed wells characteristics.

2.4 Water Quality

There have been multiple water samples collected at the existing well. The well (GWIC ID 78745) resulted in a background nitrate/nitrite concentration of 0.68 mg/L. Water quality samples include chemical and bacterial analysis. The proposed well will be tested once complete.

TC 7 th Day Adventist Church	PWS-6 Report – Source Water Delineation
PCI Project #: 9522-24	*

3.0 DELINEATION OF GROUND WATER SOURCES

3.1 Hydrogeologic Conditions

The public water supply well is assumed to be in an unconfined or semi-confined aquifer if completed above the limiting bedrock layer. Most of the well logs in the area show water bearing sand and clay at depths greater than 50 feet. Based on MBMG Ground-Water Assessment Map, ground water in the shallow aquifers is under unconfined conditions and is characterized by local flow systems where ground water moves from local drainage divides toward adjacent valley bottoms. The well is located within the shallow basin in the Quaternary sediments (alluvium, outwash, and alluvial fan sediments). These aquifers are highly permeable and reportedly have high yield ranging between 5 to 100 gpm. Infiltration of irrigation and precipitation and losses from streams along the base of the Cabinet Mountain Range are significant sources of recharge to the shallow aquifers. Furthermore, the source water for the well is classified as High Source Water Sensitivity based on Table 2: Source Water (Aquifer) Sensitivity Table criteria. See attached soil map in **Appendix B**.

3.2 Conceptual Model & Assumptions

Groundwater flow in this area is to the northeast running perpendicular with Noxon Reservoir and down from the higher elevations to the southwest. It is assumed that the reservoir is a gaining waterway in this area due to the surrounding creeks on both sides of the river upgradient from the property. Therefore, the well will not be hydraulically connected to surface water. The following methods will be used to delineate the different regions:

<u>Control Zone</u> – A 100-foot radius control zone is delineated around the wellhead. See attached Site Layout – Appendix A.

<u>Inventory Region</u> – The inventory region is generally the area that is expected to contribute to the water supply over three years; this is sometimes referred to as a three-year capture zone. The inventory region for the PWS was delineated based on a one-mile radius. See attached Inventory Region Map – **Appendix B**.

3.3 Well Information

Final well information will be reports. The existing well was dug to a total depth of 104 feet, static water level of 36 feet, pump water level of 41 feet, and yield of 50 gpm for 2 hours.

3.4 Aquifer Properties

Due to the small number of wells in the area little is known about the aquifer properties in the area. The well will be pump tested after completion to determine aquifer properties. The static water level from the source aquifer is greater than 25 feet of the surface per the existing well log; therefore, the water source should not require full-time disinfection.

TC 7 th Day Adventist Church	PWS-6 Report – Source Water Delineation
PCI Project #: 9522-24	

4.0 INVENTORY

Montana Natural Resource Information System Digital Atlas of Montana was used to determine inventory and potential sources of contamination.

4.1 Control Zone

The well location can be seen in **Appendix A.** The 100-foot control zone for the public water supply well contains part of the school building and the parking area. The new septic system will be located outside of the control zone closer toward the back of the property. This drainfield will be upgradient but not directly upgradient of the proposed well. The area is contained within the property boundary. The area immediately outside the property is a residential development with single-family houses served by individual wells and septic systems. No contamination is foreseen. This control zone will be owned by Trout Creek Seventh Day Adventist Church.

4.2 Inventory Region

The 1-mile radius is shown in **Appendix A.** The 1-mile inventory region contains much of the landscape that is within the control zone. In **Appendix B**, NRIS data shows a mix of land use surrounding the property that includes evergreen forest, open grassland, mixed forest, and a residential and commercial development. Highway 200 with local roadways run through this region. NRIS did not identify any other major sources of contamination such as abandoned mine sites, remediation response sites, landfills, federal superfund sites, crude oil pipelines, or RV dump sites.

4.3 Recharge Region

The recharge region includes all area upstream of the property in the Belgian Gulch-Noxon Reservoir. The area includes about 8.4 square miles of mostly agriculture, forested and residential land with little development and low risk of contamination.

TC 7 th Day Adventist Church	PWS-6 Report – Source Water Delineation
PCI Project #: 9522-24	Ĩ

5.0 <u>SUSCEPTIBILITY</u>

Susceptibility is the degree of likelihood for a public water supply to be impacted by inventoried contaminant sources. Susceptibility is determined in accordance with the *Instructions for Completing a PWS-6 Report for Community or Non-Community Non-Transient Public Water Supplies* (DEQ, 2007). Susceptibility is determined by considering the *hazard* that a significant potential contaminant source presents to the PWS source water, relative to any *barriers* to the contaminant. Hazard is determined by the proximity or density of significant potential contaminant sources. Barriers to contamination are anything that decreases the likelihood of contaminants reaching a water source.

Potential	Potential	Hazard	Hazard	Barriers	Susceptibility
Contaminant Source	Contaminants		Rating		
Septic Systems	Nitrate, Pathogens	Leakage of sewage into groundwater	Moderate (50-300 per sq. mile)	Well construction; well pump and intake placement; proper maintenance of facilities;	Low
On-Site Septic Systems	Nitrate, Pathogens	Leakage of Sewage into groundwater	High (currently within control zone)	Well construction; well pump and intake placement; abandoned existing system; proposed location downgradient of well	Low
Land use – Agricultural/ir rigated land	Pesticides, fertilizer being applied to surrounding land	Routine application of fertilizer and pesticides, storm water runoff. Infiltration to groundwater	Low (less than 20 percent of the region)	Well construction; well pump and intake placement; emergency response plan; proper application rates	Low
Active USTs	VOCs, petroleum hydrocarbons	Contaminants leaching into groundwater	High	Compliance with 1998 upgrades, spill prevention, groundwater monitoring, down gradient of PWS	Moderate

Table 1 – Significant Potential Contaminant Sourc	es for New Well
---	-----------------

These ratings are derived from the procedures established by the *Instructions for Completing a PWS-6 Report for Community or Non-Community Non-Transient Public Water Supplies* (DEQ,

TC 7 th Day Adventist Church	PWS-6 Report – Source Water Delineation
PCI Project #: 9522-24	

2007). In general, the hazard posed by the septic systems in the area is moderate (50-300 septic systems/restroom facilities per square mile). The hazard posed by on-site septic system is high due to existing septic system being in the control zone. The hazard posed by agricultural land use is low (less than 20% of land use within the inventory region). The hazard posed by active USTs is moderate after barriers are implemented. An average rating of "low susceptibility" is given for the new well.

6.0 LIMITATIONS

This Source Water Delineation and Assessment Report is intended to meet the technical requirements for delineation and assessment of the proposed well field as required by the Montana Department of Environmental Quality and the federal Safe Drinking Water Act (SDWA) Amendments of 1996 [U.S. Code Title 42, Chapter 6A, Subchapter XII, Part E, § 300j-13-(a) Source Water Assessment]. The following limitations should be noted:

- Not every potential or existing source contamination in the proposed area has been identified. Consideration was limited to potential sources of contamination that are within the inventory region and of a type determined by the DEQ to be significant.
- Potential sources of contamination were identified using online databases and available overhead and map imagery. Field surveys and inspections of the inventory region were not conducted.
- Delineation of the recharge region is considered a first-order approximation, and may not be accurate. In order to accurately delineate a truly representative recharge region, a detailed field study would be required. Such a study is beyond the scope of this report.
- The potential contaminant sources described in the inventory are identified from readily available information. Consequently, unregulated activities or unreported contaminant releases may have been overlooked. Multiple data sources are used to increase the likelihood that major threats to the source water are identified. The inventory is not exhaustive. Absence of a potential contaminant in the inventory or susceptibility assessment of this report does not mean that the potential for contamination does not exist, or that there is no threat.
- This report is not, and should not be construed as, a guarantee, warranty or certification that the PWS (well field) will not be impacted by potential contaminant sources given a low susceptibility.

TC 7 th Day Adventist Church	PWS-6 Report – Source Water Delineation
PCI Project #: 9522-24	*

7.0 <u>REFERENCES</u>

- 1. Montana Department of Environmental Quality. (2022, June 02). Instructions for Completing a PWS-6 Report For Transient Public Water Supplies.
- 2. Montana Department of Environmental Quality. (1999). *PWS 6 Source Water Protection Delineation*.
- 3. Montana State Library Natural Resources Information System. https://nris.msl.mt.gov/

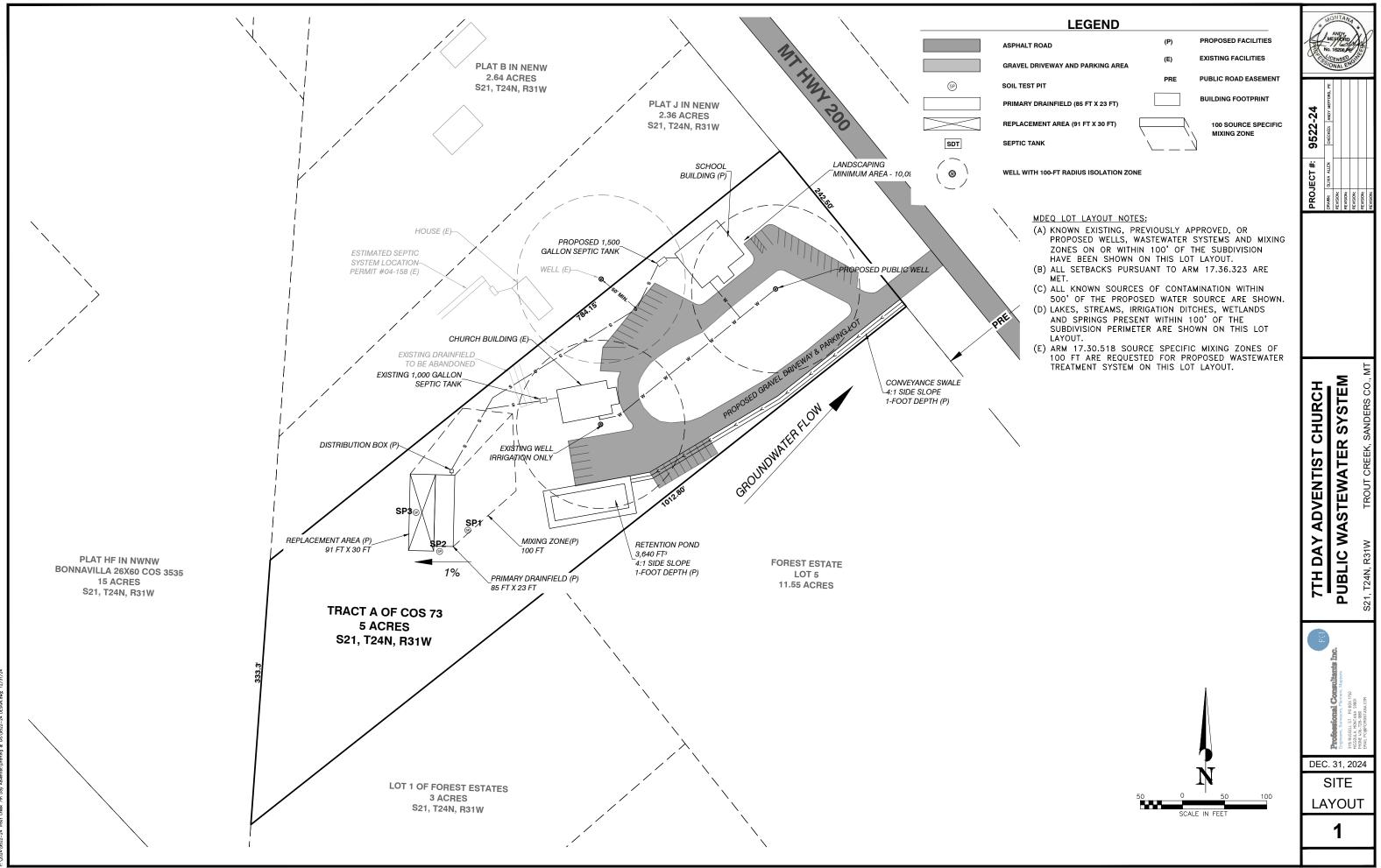
Prepared by: Landmark Consulting LLC

Kula/

Kane Leithead, EIT

Checked by:

Andy Mefford, PE


Date <u>12/31/2024</u>

TC 7 th Day Adventist Church	PWS-6 Report – Source Water Delineation
PCI Project #: 9522-24	

APPENDIX A:

Site Layout – Well Location, Control Region

TC 7 th Day Adventist Church	PWS-6 Report – Source Water Delineation
PCI Project #: 9522-24	1

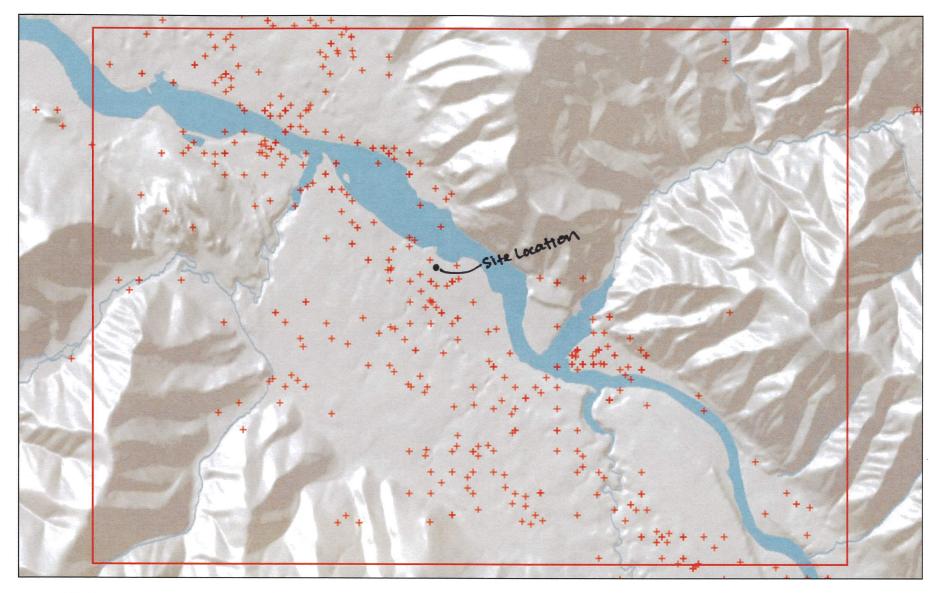
LEGEND

RRW & HRW (ROADWAYS AND RAILROAD)

STATE SURFACE WATER (NOXON RESERVOIR)

ADP & SR MIXTURE (AGRICULTURAL DRYLAND PASTURE AND SEWERED RESIDENTIAL)

SC (SEWERED COMMERCIAL)


SR (SEWERED RESIDENTIAL)

APPENDIX B:

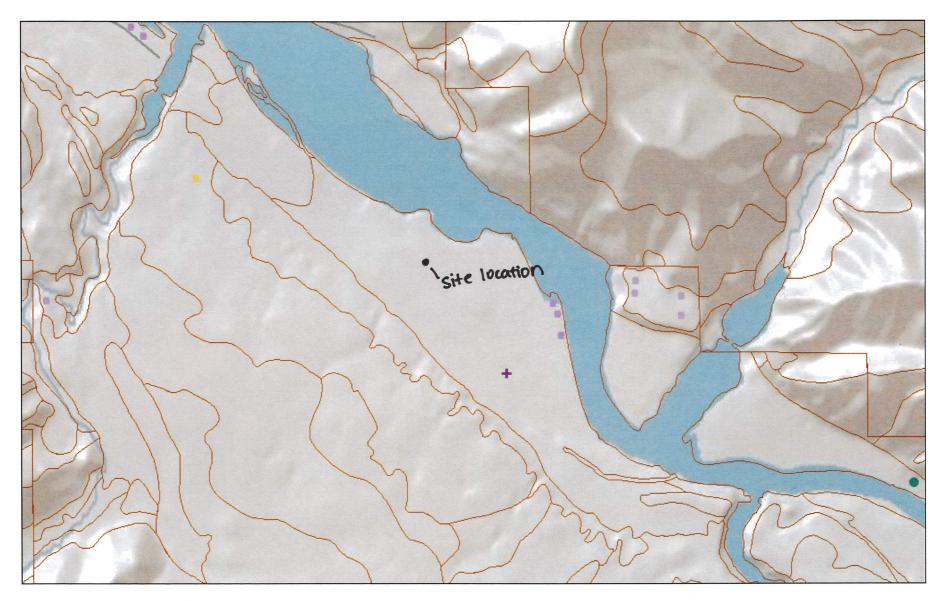
Natural Resource Information System – Inventory Region


TC 7 th Day Adventist Church	PWS-6 Report – Source Water Delineation
PCI Project #: 9522-24	1

+ GWWELLS

Map created using the Digtal Atlas May 6, 2024 http://msl.mt.gov/GIS/Atlas

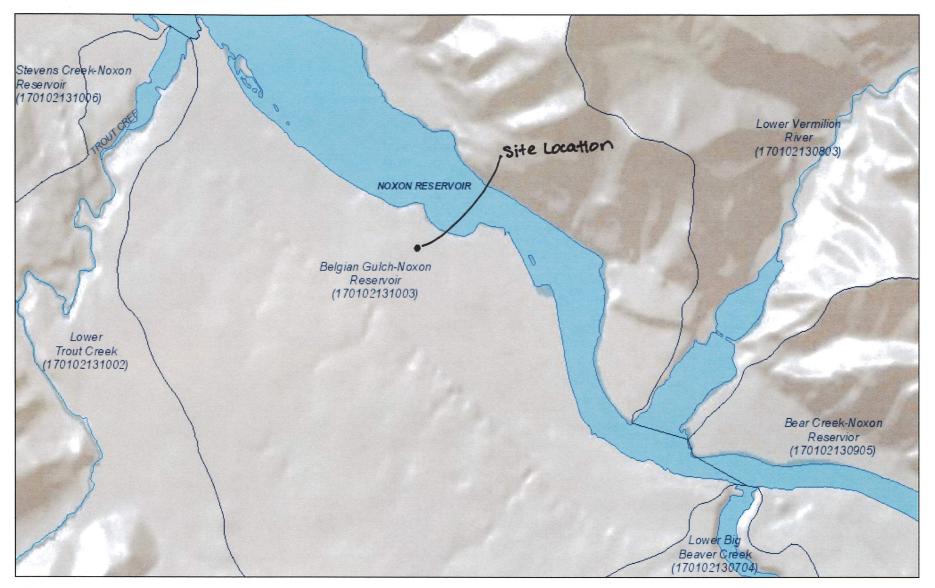
Montana State Libary - Digital Library (406) 444-5354 | geoinfo@mt.gov | http://msl.mt.gov


SEPDENS2010

Map created using the Digtal Atlas May 6, 2024 http://msl.mt.gov/GIS/Atlas

Montana State Libary - Digital Library (406) 444-5354 | geoinfo@mt.gov | http://msl.mt.gov

SSURGO Soils Map


Soils MU

- + Gravel Pit
- SSURGO_POINT Marsh
 - Stony SOIL_LINE
 - Gravelly Escarpment
 - Sandy

Map created using the Digtal Atlas May 6, 2024 http://msl.mt.gov/GIS/Atlas

Montana State Libary - Digital Library (406) 444-5354 | geoinfo@mt.gov | http://msl.mt.gov

Watershed Map

Subwatershed (WBD_HU12) Watershed (WBD_HU10) Subbasin (WBD_HU8)

Lakes24K_NamedOnly

Streams24K_NamedOnly

Map created using the Digtal Atlas May 6, 2024 http://msl.mt.gov/GIS/Atlas

Montana State Libary - Digital Library (406) 444-5354 | geoinfo@mt.gov | http://msl.mt.gov

Montana Digital Al

Land Cover Map

Land Cover

Summarized by: (Custom Area of Interest)

23% (433

Acres)

Forest and Woodland Systems

Conifer-dominated forest and woodland (xeric-mesic)

Rocky Mountain Dry-Mesic Montane Mixed Conifer Forest

This ecological system, composed of highly variable montane conifer forests, is found throughout Montana. It is associated with a submesic climate regime with annual precipitation ranging from 250 to 1,000 millimeters (10-39 inches), with most precipitation occurring during winter, and April through June. Winter snowpacks typically melt off in early spring at lower elevations. Elevations range from valley bottoms to 1,676 meters (5,500 feet) in northwestern Montana and up to 2,286 meters (7,500 feet) on warm aspects in southern Montana. In northwestern and west-central Montana, this ecosystem forms a forest belt on warm, dry to slightly moist sites. It generally occurs on gravelly soils with good aeration and drainage and a neutral to slightly acidic pH. In the western part of the state, it is seen mostly on well drained mountain slopes and valleys from lower treeline to up to 1,676 meters (5,500 feet). Immediately east of the Continental Divide, in north-central Montana, it occurs at montane elevations. Douglas-fir (Pseudotsuga menziesii) is the dominant conifer both as a seral and climax species. West of the Continental Divide, occurrences can be dominated by any combination of Douglas-fir and long-lived, seral western larch (Larix occidentalis), grand fir (Abies grandis), ponderosa pine (Pinus ponderosa) and lodgepole pine (Pinus contorta). Aspen (Populus tremuloides) and western white pine (Pinus monticola) have a minor status, with western white pine only in extreme western Montana. East of the Continental Divide, larch is absent and lodgepole pine is the co-dominant. Engelmann spruce (Picea engelmannii), white spruce, (Picea glauca) or their hybrid, become increasingly common towards the eastern edge of the Douglas-fir forest belt.

Forest and Woodland Systems

Conifer-dominated forest and woodland (mesic-wet)

Rocky Mountain Mesic Montane Mixed Conifer Forest

These forests are generally dominated by western hemlock (Tsuga heterophylla), western red cedar (Thuja plicata), and grand fir (Abies grandis). They are found in areas influenced by incursions of mild, wet, Pacific maritime air masses west of the Continental Divide in Montana. Occurrences are found on all slopes and aspects but grow best on sites with high soil moisture, such as toeslopes and bottomlands. At the periphery of its distribution, this system is confined to moist canyons and cooler, moister aspects. Generally, these are moist, nonflooded or upland forest sites that are not saturated yearlong. In northwestern Montana, western hemlock and western red cedarforests occur on bottomland and northerly exposures between 609-1,585 meters (2,000-5,200 feet) on sites with an average annual precipitation of 635 millimeters (25 inches). These forests are common in extreme northwestern Montana, and extend eastward to the Continental Divide in the Lake McDonald drainage of Glacier National Park. Isolated stands of western hemlock occur in the Swan Valley, but are found most commonly in the Libby and Thompson Falls vicinities, west to the Idaho border. Western red cedaroccurs extensively in the Mission Mountain ranges south to Missoula, and on lower flanks of the Swan Range north of Lion Creek. It is confined to the riparian zone of major streams on the east face of the Bitterroot Mountain Range. Grand fir, being less moisture dependent, occurs in more southerly and easterly sites than western red cedar and western hemlock. This system is similar to Rocky Mountain Dry-Mesic Mixed Montane Conifer Forest, which can be described as a seral phase of this system on appropriate sites west of the Continental Divide.

Wetland and Riparian Systems Open Water

Open Water

All areas of open water, generally with less than 25% cover of vegetation or soil

9% (164

Acres)

Grassland Systems Montane Grassland

Rocky Mountain Lower Montane, Foothill, and Valley Grassland

This grassland system of the northern Rocky Mountains is found at lower montane to foothill elevations in mountains and valleys throughout Montana. These grasslands are floristically similar to Big Sagebrush Steppe but are defined by shorter summers, colder winters, and young soils derived from recent glacial and alluvial material. They are found at elevations from 548 - 1,650 meters (1,800-5,413 feet). In the lower montane zone, they range from small meadows to large open parks surrounded by conifers; below the lower treeline, they occur as extensive foothill and valley grasslands. Soils are relatively deep, fine-textured, often with coarse fragments, and non-saline. Microphytic crust may be present in high-quality occurrences. This system is typified by cool-season perennial bunch grasses and forbs (>25%) cover, with a sparse shrub cover (<10%). Rough fescue (*Festuca campestris*) is dominant in the northwestern portion of the state and Idaho fescue (*Festuca idahoensis*) is dominant or co-dominant throughout the range of the system. Bluebunch wheatgrass (*Pseudoroegneria spicata*) occurs as a co-dominant throughout the range as well, especially on xeric sites. Western wheatgrass (*Pascopyrum smithii*) is consistently present, often with appreciable coverage (>10%) in lower elevation occurrences in western Montana and virtually always present, with relatively high coverages (>25%), on the edge of the Northwestern Great Plains region. Species diversity ranges from a high of more than 50 per 400 square meter plot on mesic sites to 15 (or fewer) on xeric and disturbed sites. Most occurrences have at least 25 vascular species present. Farmland conversion, noxious species invasion, fire suppression, heavy grazing and oil and gas development are major threats to this system.

Human Land Use Developed

o Image

Other Roads

County, city and or rural roads generally open to motor vehicles.

Human Land Use Developed

Low Intensity Residential

Includes areas with a mixture of constructed materials and vegetation. Impervious surfaces account for 20-50% of total cover. These areas most commonly include single-family housing units in rural and suburban areas. Paved roadways may be classified into this category.

1 1

.

5% (87

Acres)

6% (117

Acres)

Wetland and Riparian Systems Floodplain and Riparian

Northern Rocky Mountain Lower Montane Riparian Woodland and Shrubland

This ecological system is found throughout the Rocky Mountain and Colorado Plateau regions. In Montana, sites occur at elevations of 609-1,219 meters (2,000-4,000 feet) west of the Continental Divide. East of the Continental Divide, this system ranges up to 1,676 meters (5,500 feet). It generally comprises a mosaic of multiple communities that are tree-dominated with a diverse shrub component. It is dependent on a natural hydrologic regime with annual to episodic flooding, so it is usually found within the flood zone of rivers, on islands, sand or cobble bars, and along streambanks. It can form large, wide occurrences on mid-channel islands in larger rivers, or narrow bands on small, rocky canyon tributaries and well-drained benches. It is also typically found in backwater channels and other perennially wet but less scoured sites, such as floodplains, swales and irrigation ditches. In some locations, occurrences extend into moderately high intermountain basins where the adjacent vegetation is sage steppe. Black cottonwood (*Populus balsamifera* ssp. *trichocarpa*) is the key indicator species. Other dominant trees may include boxelder maple (*Acer negundo*), narrowleaf cottonwood (*Populus angustifolia*), eastern cottonwood (*Populus deltoides*), Douglas-fir (*Pseudotsuga menziesii*), peachleaf willow (*Salix amygdaloides*), or Rocky Mountain juniper (*Juniperus scopulorum*). Dominant shrubs include Rocky Mountain maple (*Acer glabrum*), thinleaf alder (*Alnus incana*), river birch (*Betula occidentalis*), redoiser dogwood (*Cornus sericea*), hawthorne (*Crataegus* species), chokecherry (*Prunus virginiana*), skunkbush sumac (*Rhus trilobata*), willows (*Salix* species), rose (*Rosa* species), silver buffaloberry (*Shepherdia argentea*), or snowberry (*Symphoricarpos* species).

Forest and Woodland Systems

Conifer-dominated forest and woodland (xeric-mesic)

Rocky Mountain Ponderosa Pine Woodland and Savanna

This system occurs on warm, dry, exposed sites in the foothills of the Rocky Mountains in west-central and central Montana, at the ecotone between grasslands or shrublands and more mesic coniferous forests. Elevations range from 1,066 to 1,676 meters (3,500-5,500 feet), with higher elevation examples mostly confined to central Montana. Occurrences are found on all slopes and aspects; however, moderately steep to very steep slopes or ridgetops are most common. True savanna types are infrequent; the system is more characteristically an open forest with a grassy understory. In the western part of the state, this system is seen mostly on dry slopes in the rainshadow of the Bitterroot Mountains. East of the Continental Divide, it is most widespread around Helena and Lewistown, although it occurs throughout mountain ranges as far east as the Little Rocky and Bearpaw Mountains. Ponderosa pine (*Pinus ponderosa*) is the dominant conifer. Douglas-fir (*Pseudotsuga menziesii*) and western larch (*Larix occidentalis*) may be present in the tree canopy in the more western areas, but are usually absent. In central Montana, limber pine (*Pinus flexilis*) and horizontal juniper (*Juniperus horizontalis*) are frequently components. Although the understory of ponderosa pine forests is often shrubby in other states, in Montana, habitats are mostly dominated by graminoids, although bitterbrush (*Purshia tridentata*), white snowberry (*Symphoricarpos albus*), and skunkrush (*Rhus trilobata*) occur in forests on benchlands and mock slopes in the central portion of the state. Understory vegetation is more typically grasses and forbs that resprout following low to moderate intensity surface fires. Prolonged drought, beetle kill and exotic invasion are rapidly changing the dynamics of this system.

Human Land Use Developed

Developed, Open Space

Vegetation (primarily grasses) planted in developed settings for recreation, erosion control, or aesthetic purposes. Impervious surfaces account for less than 20% of total cover. This category often includes highway and railway rights of way and graveled rural roads.

Human Land Use Developed

Commercial / Industrial

Businesses, industrial parks, hospitals, airports; utilities in commercial/industrial areas.

2% (39 Acres)

Hu	m	а	n	L	а	n	d	U	S	e
D	ev	e	lo	p	e	d				

Major Roads

2% (35 Acres)

No Image

U.S. and State Highways that are not part of the National Highway System (NHS) Interstate network. This category includes entrance and exit ramps to NHS Interstate highways.

Human Land Use Developed High Intensity Residential

Includes areas with a mixture of constructed materials and vegetation. Impervious surfaces account for 50-80% of the total cover. These areas most commonly include single-family housing units in urban areas. Paved roadways, parking lots, and other large impervious surfaces may be classified into this category.

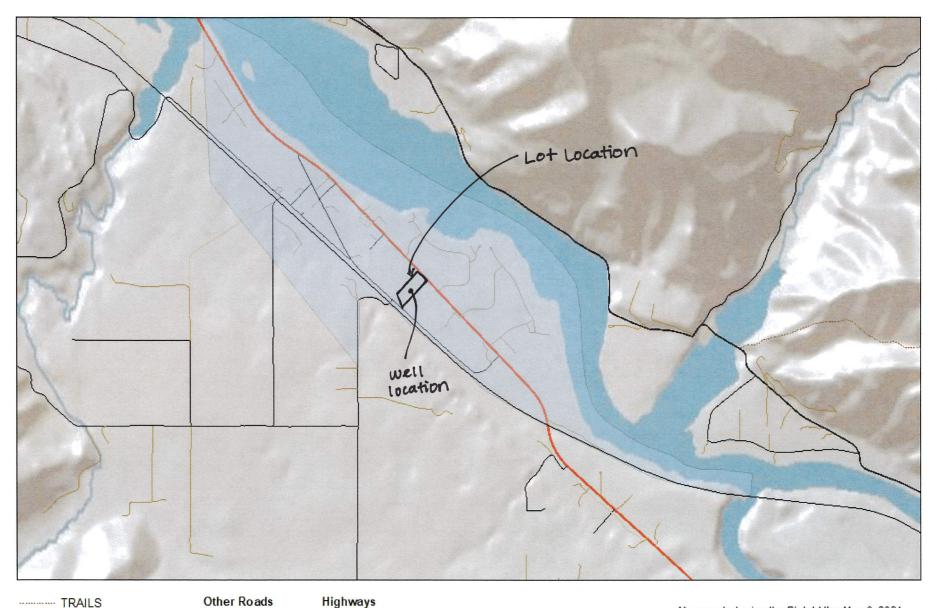
Human Land Use Developed

Railroad

2% (33 Acres) Railroad tracks and railroad berms/rights of way, currently in use or capable of use

Additional Limited Land Cover

- 1% (23 Acres) Alpine-Montane Wet Meadow
- 1% (20 Acres) 📕 Insect-Killed Forest
- 1% (15 Acres) <mark>Pasture/Hay</mark>
- <1% (5 Acres) 📕 Rocky Mountain Subalpine-Montane Mesic Meadow


<1% (4 Acres) 📕 Emergent Marsh

<1% (2 Acres) Rocky Mountain Cliff, Canyon and Massive Bedrock

<1% (1 Acres) 📕 Introduced Upland Vegetation - Annual and Biennial Forbland

- <1% (1 Acres) Rocky Mountain Subalpine Dry-Mesic Spruce-Fir Forest and Woodland
- <1% (O Acres) 📓 Rocky Mountain Subalpine-Montane Fen

Population and Roadway Map

----- TRAILS

- RAILROADS

Other Roads

TOWNAREAS

Agency Road la mine

Access Road

NHS Primary Concession and Primary

NHS Interstate

Census Designated Place Public Roads

Public Road Secondary

Map created using the Digtal Atlas May 6, 2024 http://msl.mt.gov/GIS/Atlas

Montana State Libary - Digital Library (406) 444-5354 | geoinfo@mt.gov | http://msl.mt.gov

M

APPENDIX C:

Existing Well Documents Water Quality Sample Test

TC 7 th Day Adventist Church	PWS-6 Report – Source Water Delineation
PCI Project #: 9522-24	Ĩ

MONTANA WELL LOG REPORT

Other Options

Return to menu

This well log reports the activities of a licensed Montana well driller, serves as the official record of work done within the borehole and casing, and describes the amount of water encountered. This report is compiled electronically from the contents of the Ground Water Information Center (GWIC) database for this site. Acquiring water rights is the well owner's responsibility and is NOT accomplished by the filing of this report.

Plot this site in State Library Digital Atlas Plot this site in Google Maps View scanned well log (7/16/2009 1:11:20 PM)

Site Name: TH DAY ADV CHR Section 7: Well Test Data GWIC Id: 78745 Total Depth: 104 DNRC Water Right: 19812 Total Depth: 104 Section 1: Well Owner(s) Water Temperature: 1) 7TH DAY ADVENT CHURCH (MAIL) NA TROUT CREEK MT 59874 (09/01/1977] S0 Section 2: Location Time of recovery _ hours. Township Range 24N 31W 21NW7 Geocode SANDERS County Latitude Longitude Ground Surface Altitude Ground Surface Method Datum Datum 47.828752 -115.584602 Ground Surface Altitude Ground Surface Method Datum Datum Ground Surface Altitude Ground Surface Method Datum Datum Section 3: Proposed Use of Water PUBLIC WATER SUPPLY (1) Unassigned Section 5: Well Completion Date Datue well completed: Thursday, September 1, 1977 Section 6: Well Construction Details Borchole dimensions From To Diameter Thickness From To Diameter Thickness From To Diameter Thickness From To Diameter Thickness	GWIC Id: 78745 Tota DNRC Water Right: 19812 Tota Section 1: Well Owner(s) Wall 1) 7TH DAY ADVENT CHURCH (MAIL) Air N/A Air TROUT CREEK MT 59874 [09/01/1977] 50 Section 2: Location Tim Township Range Section 24N 31W 21 NW¼ County Geocode Pun 47.828752 -115.584602 TRS-SEC NAB3 Ground Surface Altitude Ground Surface Method Datum pos Ground Surface Altitude Ground Surface Method Datum pos Addition Block Lot Sec Section 3: Proposed Use of Water Geo Geo PUBLIC WATER SUPPLY (1) Una Sec Sec Section 5: Well Completion Date Date well completed: Thursday, September 1, 1977 Section 6: Well Construction Details Sec Borehole dimensions From To Diameter Oital Geo Gasing From To Diameter Oital 6 Oital Status Geo 1 1	l Depth: ic Water						
DNRC Water Right: 19812 Total Depth: 104 Section 1: Well Owner(s) Static Water Level: 36 1) 7TH DAY ADVENT CHURCH (MAIL) Nater Temperature: TROUT CREEK MT 59874 [09/01/1977] Air Test * Section 2: Location Guarter Sections Township Range Section 24N 31W 21 County Geocode SANDERS Satistive Latitude Longitude Geomethod Totaus Trassec NWVA Ground Surface Altitude Ground Surface Method Datum Ground Surface Altitude Ground Surface Method Datum Blick Lot Section 9: Well Log Geologic Source Unassigned Section 7: Well Completion Date Description Dilling Methods: Thursday, September 1, 1977 Section 6: Well Completion Date Image: Section 1: 1977 Section 7: Well Completion Date Image: Section 1: 1977 Section 6: Well Completion Date Image: Section 1: 1977 Section 7: Well Completion Date Image: Section 1: 1977 Section 6: Well Construction Details Image: Section 1: 1977 Section 7: Well Completion Date Image: Section 1: 1977 Section 6: Well Construction Details Image: Section 2: Imag	DNRC Water Right: 19812 Tota Section 1: Well Owner(s) Wat 1) TTH DAY ADVENT CHURCH (MAIL) Air N/A Air TROUT CREEK MT 59874 [09/01/1977] 50 Section 2: Location Tim Township Range Section 24N 31W 21 NW¼ County Geocode Pun Attitude Longitude Geomethod Datum 47.828752 -115.584602 TRS-SEC NAD83 Ground Surface Altitude Ground Surface Method Datum Date Gasing * Dupos From Tota Section 5: Well Construction Details Borehole dimensions From To Diameter Pressure Intickness From From To Diameter O O Intickness Intickness Intickness Intickness Section 6: Well Construction Details Borehole dimensions From Intickness Intickness Intickness Intickness I 104 6 0.25 STEEL Intickness STEEL Intinticknes Inticknes Inti	ic Water	104					
Section 1: Well Owner(s) Water Temperature: 1) 7TH DAY ADVENT CHURCH (MAIL) Air Test * TROUT CREEK MT 59874 (09/01/1977) 50. gpm with drill stem set at _ feet for 2. hours. Section 2: Location Time of recovery, water level _ feet. Township Range Section 24N 31W 21 MV/A Geocode Time of recovery, water level _ feet. SANDERS * During the well test the discharge rate shall be as uniform as possible. This rate may or but be the sustainable yield of the well does not include the reservoir of the well casing. Addition Block Lot Section 3: Proposed Use of Water Section 9: Well Log Geologic Source Unassigned VBLIC WATER SUPPLY (1) Section 9: Well Log Section 5: Well Completion Date 1 Date well completed: Thursday. September 1, 1977 1 Section 6: Well Construction Details 1 Borehole dimensions 1 From To Diameter Mail 0 1014 6 Casing 1 County Stetel County County Section 6: Well Construction Details 1	Section 1: Well Owner(s) Wat 1) 7TH DAY ADVENT CHURCH (MAIL) Air N/A Air TROUT CREEK MT 59874 [09/01/1977] 50 Section 2: Location Tim Township Range Section Quarter Sections 24N 31W 21 NW% Pun County Geocode SANDERS * Du Latitude Longitude Geomethod Datum pos 47.828752 -115.584602 TRS-SEC NAD83 well Ground Surface Altitude Ground Surface Method Datum Datum pos Addition Block Lot Sec Sec Section 3: Proposed Use of Water Geo Geo PUBLIC WATER SUPPLY (1) Una Section 4: Type of Work Fro Fro Fro Drilling Method: FORWARD ROTARY Fro Drilling Method: FORWARD ROTARY Status: NEW WELL Section 6: Well Construction Details Borehole dimensions Ground Geo Gasing From To Diameter Thickness Rating Joint Type I I I							
1) 7TH DAY ADVENT CHURCH (MAIL) N/A TROUT CREEK MT 59874 [09/01/1977] Section 2: Location Township Range Section Quarter Sections 24N 31W 21 NWV/A County Geocede SANDERS Latitude Longitude Geomethod Datum 47.828752 -115.584602 TRS-SEC NADB3 Ground Surface Altitude Ground Surface Method Datum Date Section 3: Proposed Use of Water PUBLIC WATER SUPPLY (1) Section 4: Type of Work Drilling Method: FORWARD ROTARY Status: NEW WELL Section 5: Well Completion Date Date well completed: Thursday, September 1, 1977 Section 6: Well Construction Details Borehole dimensions From To Diameter 0 104 6 Casing From To Diameter 1 104 6 0.25 Completion (Perf/Screen)	1) 7TH DAY ADVENT CHURCH (MAIL) N/A TROUT CREEK MT 59874 [09/01/1977] Section 2: Location Township Range Section Quarter Sections 24N 31W 21 NW¼ County Geocode SANDERS Latitude Longitude Geomethod Datum 47.828752 -115.584602 TRS-SEC NAD83 Ground Surface Altitude Ground Surface Method Datum Date Ground Surface Altitude Ground Surface Method Datum Date Cassing From To Diameter Thickness Rating Joint Type 1 104 6 0.25 STEEL	er rempt						
N/A Air Test * TROUT CREEK MT 59874 [09/01/1977] 50 gpm with drill stem set at _ feet for 2 hours. Section 2: Location Time of recovery _ hours. Township Range Section 24N 31W 21 Aut Test * NW% County Geocode SANDERS * Latitude Longitude Ground Surface Altitude Geomethod Ground Surface Altitude Ground Surface Method Block Lot Section 3: Proposed Use of Water PUBLIC WATER SUPPLY (1) Status: NEW WELL Section 5: Well Congletion Date Data well completed: Thursday, September 1, 1977 Section 6: Well Construction Details Borchole dimensions From To Diameter 0 104 1 104 1 1	N/A Air TROUT CREEK MT 59874 [09/01/1977] 50 Section 2: Location Time Township Range Section Quarter Sections 24N 31W 21 NW% Pur County Geocode SANDERS * Dot Latitude Longitude Geomethod Datum pos Y Geocode Section 3: Proposed Use of Water Section 3: Proposed Use of Water Section 3: Proposed Use of Water Geocode PUBLIC WATER SUPPLY (1) Una Section 5: Well Completion Date Fro Date well completed: Thursday, September 1, 1977 Section 6: Well Construction Details Borehole dimensions From To Diameter Thickness Rating Joint Type -1 104 6 0.25 STEEL STEEL Statel							
TROUT CREEK MT 59874 [09/01/1977] 50 gpm with drill stem set at _ feet for 2 hours. Section 2: Location Township Range Section Township Range Section Quarter Sections 24N 31W 21 NW/A County Geocode Feet. SANDERS Latitude Longitude Geomethod Datum A7.828752 -115.584602 TRS-SEC NZMA Ground Surface Altitude Ground Surface Method Datum Datum Ground Surface Altitude Ground Surface Method Datum Date PUBLIC WATER SUPPLY (1) Section 8: Remarks Section 1: Type of Work Dellog Geologic Source Dulling Method: FORWARD ROTARY Section 5: Well Completion Date 36 104 SAND GRAVEL WATER Date well completed: Thursday, September 1, 1977 Section 6: Well Construction Details Section 6: Well Construction Details Borehole dimensions From To Diameter Image: Section S Steel Image: Section Steel I 104 6 0.225 Steel Steel Image: Section Steel Casing Image: Section Steel Steel Image: Section	TROUT CREEK MT 59874 [09/01/1977] 50 Section 2: Location Tim Township Range Section Quarter Sections 24N 31W 21 NWV/4 County Geocode SANDERS * Du Latitude Longitude Geomethod Datum pos 47.828752 -115.584602 TRS-SEC NAD83 well Ground Surface Altitude Ground Surface Method Datum Date cas Addition Block Lot Sec Sec Section 3: Proposed Use of Water PUL Geo Geo PUBLIC WATER SUPPLY (1) Una Section 4: Type of Work Fro Drilling Method: FORWARD ROTARY Status: NEW WELL Section 5: Well Completion Date Pos Date well completed: Thursday, September 1, 1977 Section 6: Well Construction Details Goodot 4 Goodot 4 Borehole dimensions From To Diameter Diameter Goodot 4 Goodot 4 I 104 6 0.25 STEEL STEEL STEEL STEEL	Test *						
Section 2: Location 50 gpm with dill stem set at _ feet for 2 hours. Time of recovery _ hours. Recovery water level _ feet. Yung to ward the set of the section 3: NUM4 County Geocode SANDERS Latitude Longitude Geomethod Datum 47.828752 -115.584602 TRS-SEC NAD83 Ground Surface Altitude Ground Surface Method Datum Datum 47.828752 -115.584602 TRS-SEC NAD83 Ground Surface Altitude Ground Surface Method Datum Datum Addition Block Lot Section 3: Remarks Section 3: Proposed Use of Water PUBLIC WATER SUPPLY (1) Section 9: Well Log Geologic Source Geologic Source Section 5: Well Completion Date Date well completed: Thursday, September 1, 1977 Section 6: Well Construction Details 36 104 SAND GRAVEL WATER Borehol dimensions From To Diameter 1 104 6 O.25 STEEL Completion (Pert/Screen) STEEL Completion (Pert/Screen)	Section 2: Location 50 Township Range Section Quarter Sections Rec 24N 31W 21 NW1/4 Pun County Geocode SANDERS * Du Latitude Longitude Geomethod Datum pos 47.828752 -115.584602 TRS-SEC NAD83 well Ground Surface Altitude Ground Surface Method Datum Date cas Addition Block Lot Sec Sec Section 3: Proposed Use of Water Geo Geo Una PUBLIC WATER SUPPLY (1) Una Sec Sec Section 4: Type of Work Fro Fro Fro Date well completed: Thursday, September 1, 1977 Section 6: Well Construction Details Sorehole dimensions From To Diameter Ol 104 6 Gasing Gasing From To Diameter Thickness Rating Joint Type -1 104 6 0.25 STEEL STEEL Steel							
Recovery water level _feet. Township Range Section Recovery water level _feet. Township Range Section Recovery water level _feet. SANDERS * During the well test the discharge rate shall be as uniform as possible. This rate may or may not be the sustainable yield of the well. Sustainable yield does not include the reservoir of the well casing. Addition Block Lot Section 3: Proposed Use of Water PUBLIC WATER SUPPLY (1) Section 4: Type of Work From To Diameter Township Colspan="2">Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colsp	Township Range Section Quarter Sections Rec 24N 31W 21 NW¼ Pun County Geocode SANDERS * Du Latitude Longitude Geomethod Datum pos 47.828752 -115.584602 TRS-SEC NAD83 well Ground Surface Altitude Ground Surface Method Datum Date cas Addition Block Lot Sec Sec Section 3: Proposed Use of Water Geo Geo PUBLIC WATER SUPPLY (1) Una Section 4: Type of Work Fro Fro Fro Fro Drilling Method: FORWARD ROTARY Section 5: Well Completion Date Public Water Public Water Date well completed: Thursday, September 1, 1977 Section 6: Well Construction Details Pressure Pressure Public Water 0 104 6 Casing Stating Joint Type Public Water -1 104 0.25 STEEL STEEL Stating Stating Stating Stating Stating Stating Stating Stati							
Township Range Section Cuarter sections Pumping water level <u>41</u> feet. 2AN 31W 21 NW%. Pumping water level <u>41</u> feet. SANDERS * During the well test the discharge rate shall be as uniform as possible. This rate may or may not be the sustainable yield of the sustainable yield does not include the reservoir of the well casing. Addition Block Lot Section 8: Remarks Section 3: Proposed Use of Water Section 9: Well Log Geologic Source PUBLIC WATER SUPPLY (1) Unassigned Section 9: Well Log Section 5: Well Completion Date 1 36 104 SAND GRAVEL WATER Date well completed: Thursday, September 1, 1977 1 1 36 104 SAND GRAVEL WATER Section 6: Well Construction Details Section 6: Well Construction Details 1 1 1 1 Borehole dimensions From To Diameter Thickness Rating Joint Type 1 1 1 1 1 1 1 14 0 0.25 STEEL 1 1 1 1 <td< td=""><td>Township Range Section Cuarter Sections Pun 24N 31W 21 NW¼ Pun County Geocode Sections * Du SANDERS * Du pos 47.828752 -115.584602 TRS-SEC NAD83 well Ground Surface Altitude Ground Surface Method Datum Date cas. Addition Block Lot Sector Sector Sector Sector Section 3: Proposed Use of Water PUBLIC WATER SUPPLY (1) Una Sector Sector Sector Sector Sector Fro Section 4: Type of Work Fro Fro Fro Fro Fro Diameter Diameter</td><td></td><td></td></td<>	Township Range Section Cuarter Sections Pun 24N 31W 21 NW¼ Pun County Geocode Sections * Du SANDERS * Du pos 47.828752 -115.584602 TRS-SEC NAD83 well Ground Surface Altitude Ground Surface Method Datum Date cas. Addition Block Lot Sector Sector Sector Sector Section 3: Proposed Use of Water PUBLIC WATER SUPPLY (1) Una Sector Sector Sector Sector Sector Fro Section 4: Type of Work Fro Fro Fro Fro Fro Diameter							
Zaity Sity Zit NW/4 County Geocode SANDERS * During the well test the discharge rate shall be as uniform as possible. This rate may or may not be the sustainable yield of the well. Sustainable yield does not include the reservoir of the well casing. Addition Block Lot Section 3: Proposed Use of Water PUBLIC WATER SUPPLY (1) Section 3: Proposed Use of Water Section 9: Well Log Section 4: Type of Work From To Diameter 1 36 COBBLESTONES SAND Drilling Method: FORWARD ROTARY 1 36 COBBLESTONES SAND Status: NEW WELL 36 104 SAND GRAVEL WATER Section 5: Well Construction Date 36 104 SAND GRAVEL WATER Date well completed: Thursday, September 1, 1977 2 Section 6: Well Construction Details 2 Borchole dimensions Pressure 2 From To Diameter Pressure I 104 [6 0.25 STEEL Completion (Pert/Screen) STEEL STEEL	24N 31W 21 NW /4 County Geocode SANDERS * Du Latitude Longitude Geomethod Datum pos 47.828752 -115.584602 TRS-SEC NAD83 well Ground Surface Altitude Ground Surface Method Datum Date cas Addition Block Lot Sec Section 3: Proposed Use of Water PUBLIC WATER SUPPLY (1) Una Section 4: Type of Work Fro Drilling Method: FORWARD ROTARY Status: NEW WELL Fro Section 5: Well Completion Date Date well completed: Thursday, September 1, 1977 Section 6: Well Construction Details Borehole dimensions From To Diameter O 104 6 Gasing From To Diameter Thickness Rating Joint Type -1 104 0.25 STEEL STEEL STEEL	-						
SANDERS * During the well test the discharge rate shall be as uniform as possible. This rate may or may not be the sustainable yield of the well. Sustainable yield does not include the reservoir of the well well. Sustainable yield does not include the reservoir of the well well. Sustainable yield does not include the reservoir of the well well. Sustainable yield does not include the reservoir of the well well. Sustainable yield does not include the reservoir of the well well. Sustainable yield does not include the reservoir of the well well. Sustainable yield does not include the reservoir of the well well. Sustainable yield does not include the reservoir of the well casing. Addition Block Lot Section 8: Remarks Section 3: Proposed Use of Water Section 9: Well Log Geologic Source PUBLIC WATER SUPPLY (1) Section 9: Well Cog Geologic Source Status: NEW WELL Section 5: Well Completion Date Date Date well completed: Thursday, September 1, 1977 Section 6: Well Construction Details Details Borehole dimensions Pressure Joint Type From To Diameter Pressure Joint Type I 104 6 0.25 Stetel Stetel	SANDERS Latitude Longitude Geomethod Datum pos 47.828752 -115.584602 TRS-SEC NAD83 well Ground Surface Altitude Ground Surface Method Datum Date cas Addition Block Lot Sec Section 3: Proposed Use of Water PUBLIC WATER SUPPLY (1) Sec Geo Section 4: Type of Work Drilling Method: FORWARD ROTARY Fro Fro Drilling Method: FORWARD ROTARY Section 5: Well Completion Date Public Water Fro Date well completed: Thursday, September 1, 1977 Section 6: Well Construction Details From To Diameter Image: Casing From To Diameter Wall Pressure Joint Type Image: Casing From To Diameter Thickness Rating Joint Type Image: Casing	iping wa	ter level <u>41</u> feet.					
Latitude Longitude Geomethod Datum 47.828752 -115.584602 TRS-SEC NAD83 Ground Surface Altitude Ground Surface Method Datum Dasta Addition Block Lot Section 3: Proposed Use of Water PUBLIC WATER SUPPLY (1) Section 4: Type of Work Section 9: Well Log Section 5: Well Completion Date Datum Description Date well completed: Thursday, September 1, 1977 36 COBBLESTONES SAND Section 6: Well Construction Details 36 104 SAND GRAVEL WATER Sorehole dimensions - - - From To Diameter - - 1 104 0.25 STEEL - Completion (Perf/Screen) - - -	LatitudeLongitudeGeomethodDatum pos47.828752-115.584602TRS-SECNAD83well casGround Surface AltitudeGround Surface MethodDatumDatecasAdditionBlockLotSecSection 3: Proposed Use of Water PUBLIC WATER SUPPLY (1)SecSecSection 4: Type of Work Drilling Method: FORWARD ROTARY Status: NEW WELLFroFroSection 5: Well Completion Date Date well completed: Thursday, September 1, 1977FroSection 6: Well Construction Details Borehole dimensionsFressure ThicknessFressure RatingFrom ToDiameterWall ThicknessPressure RatingFree Joint-110460.25STEEL							
Latitude Longitude Geomethod Datum possible. This rate may or may not be the sustainable yield of the well. Sustainable yield does not include the reservoir of the well casing. Ground Surface Altitude Ground Surface Method Datum Date Casing. Addition Block Lot Section 3: Proposed Use of Water Section 9: Well Log PUBLIC WATER SUPPLY (1) Section 4: Type of Work Section 5: Form To Decompletion Date Section 5: Well Completion Date Section 5: Well completed: Thursday, September 1, 1977 Section 6: Well Construction Details Borehole dimensions From To Diameter Diameter From To Diameter Uall Pressure Thickness Rating Joint Type Type Completion (Perf/Screen) Wall Pressure Stating Stating Joint Type	LatitudeLongitudeGeomethodDatumpos47.828752-115.584602TRS-SECNAD83wellGround Surface AltitudeGround Surface MethodDatumDatecasAdditionBlockLotSecSection 3: Proposed Use of WaterGeoGeoPUBLIC WATER SUPPLY (1)UnaSection 4: Type of WorkFroDrilling Method: FORWARD ROTARYFroStatus: NEW WELLSection 5: Well Completion DateDate well completed: Thursday, September 1, 1977Section 6: Well Construction DetailsBorehole dimensionsFrom ToDiameterO 1046CasingFrom ToDiameter-1104 60.25STEEL	rina the	well test the discharge rate shall be as uniform as					
47.828752 -115.584602 TRS-SEC NADB3 well. Sustainable yield does not include the reservoir of the well casing. Addition Block Lot Section 8: Remarks Section 3: Proposed Use of Water Section 9: Well Log Geologic Source PUBLIC WATER SUPPLY (1) Section 9: Well Log Geologic Source Section 5: Well Completion Date Date well completed: Thursday, September 1, 1977 Section 6: Well Construction Details Borehole dimensions From To Diameter O Inameter O Inameter I 104 6 Quest Stetu Stetu	47.828752 -115.584602 TRS-SEC NAD83 well Ground Surface Altitude Ground Surface Method Datum Date cass Addition Block Lot Sec Section 3: Proposed Use of Water Geo Geo PUBLIC WATER SUPPLY (1) Una Section 4: Type of Work Fro Drilling Method: FORWARD ROTARY Status: NEW WELL Section 5: Well Completion Date Date well completed: Thursday, September 1, 1977 Section 6: Well Construction Details Borehole dimensions From To Diameter 0 104 6 Casing From To From To Diameter 1 104 6 0.25							
Ground Surface Altitude Ground Surface Method Datum Date casing. Addition Block Lot Section 8: Remarks Section 3: Proposed Use of Water PUBLIC WATER SUPPLY (1) Section 9: Well Log Geologic Source Unassigned Section 4: Type of Work Drilling Method: FORWARD ROTARY Status: NEW WELL From To Description Section 5: Well Completion Date Date well completed: Thursday, September 1, 1977 I I 36 COBBLESTONES SAND Section 6: Well Construction Details Borehole dimensions From To Diameter Diameter Name I I From To Diameter Diameter Wall Pressure Rating Joint Type Joint I I Completion (Pert/Screen) Wall Pressure Rating StrEEL StrEEL I I	Ground Surface Altitude Ground Surface Method Datum Date cass Addition Block Lot Sector Section 3: Proposed Use of Water Sector Sector Sector PUBLIC WATER SUPPLY (1) Una Sector Sector Sector Section 4: Type of Work Fro Fro Sector Sector							
Section 3: Proposed Use of Water PUBLIC WATER SUPPLY (1) Section 4: Type of Work Drilling Method: FORWARD ROTARY Status: NEW WELL Section 5: Well Completion Date Date well completed: Thursday, September 1, 1977 Section 6: Well Construction Details Borehole dimensions From To Diameter 0 104 0 Casing From To Diameter 1 104 6 0.25 StreEL	Section 3: Proposed Use of Water Sector PUBLIC WATER SUPPLY (1) Una Section 4: Type of Work Fro Drilling Method: FORWARD ROTARY Status: NEW WELL Section 5: Well Completion Date Date well completed: Thursday, September 1, 1977 Section 6: Well Construction Details Borehole dimensions From To Diameter 0 104 6 Casing -1 104 -1 104	ng.						
Section 3: Proposed Use of Water PUBLIC WATER SUPPLY (1) Section 4: Type of Work Drilling Method: FORWARD ROTARY Status: NEW WELL Section 5: Well Completion Date Date well completed: Thursday, September 1, 1977 Section 6: Well Construction Details Borehole dimensions From To Diameter 0 104 6 Casing	Section 3: Proposed Use of Water Sector PUBLIC WATER SUPPLY (1) Una Section 4: Type of Work Fro Drilling Method: FORWARD ROTARY Status: NEW WELL Section 5: Well Completion Date Date well completed: Thursday, September 1, 1977 Section 6: Well Construction Details Borehole dimensions From To Diameter 0 104 6 Casing -1 104 -1 104	tion 9. E	Domosko					
Section 3: Proposed Use of Water Geologic Source PUBLIC WATER SUPPLY (1) Unassigned Section 4: Type of Work 0 Drilling Method: FORWARD ROTARY 1 Status: NEW WELL 1 Section 5: Well Completion Date 1 Date well completed: Thursday, September 1, 1977 36 Section 6: Well Construction Details 36 Borehole dimensions - From To Diameter 0 104 6 Casing - From To Diameter 1 104 6 0.25 Completion (Perf/Screen) STEEL	Section 3: Proposed Use of Water Gec PUBLIC WATER SUPPLY (1) Una Section 4: Type of Work Fro Drilling Method: FORWARD ROTARY Status: NEW WELL Section 5: Well Completion Date Section 5: Well Construction Details Borehole dimensions Section 6: Well Construction Details From To Diameter 0 0 104 6 Casing -1 104 -1 104		Centarks					
Section 3: Proposed Use of Water Geologic Source PUBLIC WATER SUPPLY (1) Unassigned Section 4: Type of Work 0 Drilling Method: FORWARD ROTARY 1 Status: NEW WELL 1 Section 5: Well Completion Date 1 Date well completed: Thursday, September 1, 1977 36 Section 6: Well Construction Details 36 Borehole dimensions - From To Diameter - 0 104 6 Casing - From To Diameter - -1 104 6 0.25 Completion (Perf/Screen) STEEL	Section 3: Proposed Use of Water Gec PUBLIC WATER SUPPLY (1) Una Section 4: Type of Work Fro Drilling Method: FORWARD ROTARY Status: NEW WELL Section 5: Well Completion Date Section 5: Well Construction Details Borehole dimensions Section 6: Well Construction Details From To Diameter 0 0 104 6 Casing -1 104 -1 104	tion 9: V	Vell Loa					
PUBLIC WATER SUPPLY (1) Unassigned Section 4: Type of Work 0 Drilling Method: FORWARD ROTARY 1 Status: NEW WELL 1 Section 5: Well Completion Date 1 Date well completed: Thursday, September 1, 1977 36 Section 6: Well Construction Details 36 Borehole dimensions - From To Diameter - 0 104 6 Casing - From To Diameter - -1 104 6 0.25 -1 104 6 0.25	PUBLIC WATER SUPPLY (1) Una Section 4: Type of Work Fro Drilling Method: FORWARD ROTARY Status: NEW WELL Section 5: Well Completion Date Date well completed: Thursday, September 1, 1977 Section 6: Well Construction Details Borehole dimensions From To Diameter 0 104 6 Casing -1 104 -1 104	•						
Section 4: Type of Work Drilling Method: FORWARD ROTARY Drilling Method: FORWARD ROTARY 0 Status: NEW WELL 1 Section 5: Well Completion Date 1 Date well completed: Thursday, September 1, 1977 36 Section 6: Well Construction Details 36 Borehole dimensions 3 From To Diameter 0 0 1 Solid 3 Solid 3 Solid 3 Date well completed: Thursday, September 1, 1977 36 Section 6: Well Construction Details 36 Borehole dimensions 3 From To Diameter 3 0 104 6 0.25 Stating 3	Section 4: Type of Work Fro Drilling Method: FORWARD ROTARY Status: NEW WELL Section 5: Well Completion Date Date well completed: Thursday, September 1, 1977 Section 6: Well Construction Details Borehole dimensions From To Diameter 0 104 6 Casing From To Diameter -1 104 6 0.25	-						
Jording Method: FORWARD ROTARY Status: NEW WELL 0 1 Section 5: Well Completion Date Date well completed: Thursday, September 1, 1977 Section 6: Well Construction Details Borehole dimensions From To Diameter 0 104 6 Casing From To Diameter -1 104 6 0.12 Solid 0.13 0.14 6 Casing -1 104 6 0.25 STEEL	Drilling Method: FORWARD ROTARY Status: NEW WELL Section 5: Well Completion Date Date well completed: Thursday, September 1, 1977 Section 6: Well Construction Details Borehole dimensions From To Diameter 0 104 6 Casing -1 104 6 0.25 STEEL	n Ito	Description					
Status: NEW WELL 1 36 COBBLESTONES SAND Section 5: Well Completion Date 36 104 SAND GRAVEL WATER Date well completed: Thursday, September 1, 1977 36 104 SAND GRAVEL WATER Section 6: Well Construction Details 36 104 SAND GRAVEL WATER Borehole dimensions 4 4 4 4 From To Diameter 0 104 6 6 Casing 4 4 4 4 From To Diameter Thickness 7 4 4 1 104 6 0.25 5 5 5 Completion (Perf/Screen) 5 5 5 5 5	Status: NEW WELL Section 5: Well Completion Date Date well completed: Thursday, September 1, 1977 Section 6: Well Construction Details Borehole dimensions From To Diameter 0 104 6 Casing From To Diameter -1 104 6 0.25		· · ·					
Section 5: Well Completion Date Date well completed: Thursday, September 1, 1977 Section 6: Well Construction Details Borehole dimensions From To Diameter 0 104 0 104 6 Casing From To Diameter 1 104 6 0.25 STEEL Completion (Perf/Screen)	Section 5: Well Completion Date Date well completed: Thursday, September 1, 1977 Section 6: Well Construction Details Borehole dimensions From To Diameter 0 104 6 Casing From To Diameter -1 104 -1 104 -1 0.25							
Section 5: Well Completion Date Date well completed: Thursday, September 1, 1977 Section 6: Well Construction Details Borehole dimensions From To Diameter 0 104 6 Casing From To Diameter 1 104 6 0.25 STEEL Completion (Perf/Screen)	Date well completed: Thursday, September 1, 1977 Section 6: Well Construction Details Borehole dimensions From To Diameter 0 104 6 Casing From To Diameter 1 104 6 0.25							
Date well completed: Thursday, September 1, 1977 Section 6: Well Construction Details Borehole dimensions From To Diameter 0 104 6 Casing From To Diameter Thickness Rating Joint Type -1 104 6 0.25 STEEL Completion (Perf/Screen)	Date well completed: Thursday, September 1, 1977 Section 6: Well Construction Details Borehole dimensions From To Diameter 0 104 6 Casing From To Diameter 1 104 6 0.25	30 10						
Section 6: Well Construction Details Borehole dimensions From To Diameter 0 104 6 Casing From To Diameter Thickness Rating Joint Type -1 104 6 0.25 STEEL Completion (Perf/Screen)	Section 6: Well Construction Details Borehole dimensions From To Diameter 0 104 6 Casing From To Diameter Thickness Rating Joint Type -1 104 6 0.25 STEEL							
Bore-Identifications Image: Second secon	Borehole dimensions From To Diameter 0 104 6 Casing From To Diameter Thickness Rating Joint To 104 6 0 104 6							
Wall Pressure To Diameter 0 104 Casing Image: Casing in the second in	Wall Pressure To Diameter 0 104 6 0.25	_						
0 104 6 Casing	0 104 6 Casing Wall From To Diameter Thickness Rating Joint Type -1 104 6 0.25 STEEL	_						
Casing From To Diameter Wall Pressure -1 104 6 0.25 STEEL Completion (Perf/Screen) STEEL STEEL	Casing From To Diameter Wall Pressure -1 104 6 0.25 STEEL	_						
From To Diameter Wall Thickness Pressure Rating Joint Type -1 104 6 0.25 STEEL Completion (Perf/Screen)	FromToDiameterWall ThicknessPressure RatingJointType-110460.25STEEL							
From To Diameter Thickness Rating Joint Type -1 104 6 0.25 STEEL Completion (Perf/Screen) STEEL STEEL	From To Diameter Thickness Rating Joint Type -1 104 6 0.25 STEEL							
-1 104 6 0.25 STEEL Completion (Perf/Screen)	-1 104 6 0.25 STEEL	_						
Completion (Perf/Screen)								
	Completion (Perf/Screen)							
	# of Size of							
From To Diameter Openings Openings Description Driller Certification	From To Diameter Openings Openings Description Dril		Driller Certification					
104 104 6 OPEN BOTTOM All work performed and reported in this well log is in compliance		er Certi	fication					
the Mentene well construction standards. This report is true to t	Annular Space (Seal/Grout/Packer) the	ork perf	ormed and reported in this well log is in compliance wit					
Annular Space (Seal/Grout/Packer) best of my knowledge.	bes	vork perf Vontana	ormed and reported in this well log is in compliance wit well construction standards. This report is true to the					

There are no annular space records assigned to this well.

Name: EUGENE KANE Company: KANE WELL DRILLING & PUMP SERVICE License No: WWC-23 Date Completed: 9/1/1977

Proj#9522-24	
State of Monitories and EPA constrained dividing water analysis latitudicy	Colileri test:
3700 S. Russell St. 120 - #1 Missoula, MT 59801 P.O. Box 5054 Phone: (406) 721-8179 Missoula, MT 59806	. .
Bacteriological Analysis of Drinking Water	
Name of business: <u>IC</u> 7th Day Adventist Church Person to receive report: Email: <u>Oliviaa</u> City: <u>Trout Creek</u> PWSID #: <u>Name: PCI</u> Date collector: <u>Terri Stolt3</u> Cert #: <u>City: Missoula</u> St.: <u>MT</u> Zip: <u>598</u> Type of water supply: <u>Upstales</u> Bathroom Sigk Phone: <u>Prove</u> Chlorine residual: <u>Fmail</u>	306
Test Lab # ENTER SAMPLE SITE	ed: <u>4-30</u> 24 ed: <u>5-1-</u> 24
Continue and Annual E coll Advert	t: Llg
Sink fauret a Coliforn present & coli a Asset	sfactory at this
Coliform Absent Coliform present & Coliform present & Water s	taminated: sapply should rected and
D Coliform Absent D Coliform present E. coli D Ameri D Present E. coli D Ameri D Present E. coli D Ameri	l before being 1 drjuking or
El Coliform Absent Househu El Coliform present E. coli Edisant D Present E. Coli Edisant D Present E	old water.

戦や

SAMPLES MUST ARRIVE WITHIN 30 HOURS OF COLLECTION! Keep Sample Cool. NOT frozen Samples may be dropped off in the office Monday - Friday 9am - 4pm, of mailed Monday - Thursday ONLY to P.O. Box 5064 & Missoula, MT 59806

.

-	Pro	#9522-2	<u>v4</u>	1 ;		
EPACO	Montenis end Blied diaking Tysis tebrialiciy		BD Water		1.1.C p.0. Box 50	Collert test:
			Phone: (406) 721-8179		Missoula, MT 5	9806
	•	Ba	cteriological Analys	is of Dri	nking Water	
	City: Date col Sample of Type of	rout Creek lected: 4/29/	1th Day Adventist Church PWSID #: 2024 Time: 2:35pm Stoltz Cert #: Kitchen Faucet	Name: PC Address: P.C City: Misso Phone:	P. Box 1750	Lip: <u>59806</u> results 40.50
	Test Type	Lab #	ENTER SAMPLE SITE		Construction a Result	Received: <u>4-30</u> 24 Reported: <u>5-1-24</u>
1100	P/A	2404-375	Kitchen Faucet	t) Coli	Coliforni Abseit orm present E. coli Kabsen Li Presen	Analyst: 4
1100	*		Coliform Absent	C Colli	El Coliforni Absent form present 6. coli El Absent El Present	time.
		an a		🗆 Coli	Coliform Absent form present E, coli C Assen C Present	
				L) Coli	El Coliform Absort form present E, coli El Arean El Freent	retested before being used as drinking or
.1				C Coli	El Coliform Absent form present E, coli C Absen D Present	household water.

0

機

SAMPLES MUST ARRIVE WITHIN 30 HOURS OF COLLECTION! Keep Sample Cool, NOT frozen M Samples may be dropped off in the office Monday - Friday 9am - 4pm, or mailed Monday - Thursday ONLY to P.O. Box 5064 @ Missoula, MT 59806

57

*

	Proj	#9522-	-24 -		
A CONT	kantunia eind Sed chinking	्रम् दूस -	RD Water	Lab, LIC	Colilert test:
и астану.	sta laboratory	3700 S. Ru	ssell St. 120 - #1, Missoul Phone: (406) 721-8179	a, MT 59801 P.O. Box 50 Missoula, MT	
	- ⁻	Ba	cteriological Analy	sis of Drinking Water	E A
	City: Date coll Sample c	Yout Creek	PWSID #:	ch Person to receive report: Email: <u>C</u> Name: <u>PCI</u> Address: <u>P.O. Box 1750</u> City: <u>Missoula</u> St.: <u>MT</u> V Phone: D Phone	Zip: <u>59806</u>
	Chlorine	residual:		Email	1050 Received: <u>4-30</u> -24
	Test Type	Lab #	ENTER SAMPLE SIT	E Coliforni Absent	6-1-24
•		2404-376	outside spigot	Coliform present E. coll Astern	Analyst: <u>UG</u>
- المحلي الع ا			west side	C) Coliform present E. coli C) Assert	Addistactory at this
			Coliform Absent	Coliforni present E. coli ta Aosen Cl Present	Water sapply should the disinfected and
		n na standina (parta da standina) I		El Coliform Absent El Coliform present E. coli el Absen El Present	retested before being used as drinking or
			an a	El Coliform Absent El Coliform protént E. coli El Absent El Coliform protént E. coli El Absent	

3

SAMPLES MUST ARRIVE WITHIN 30 HOURS OF COLLECTION! Keep Sample Cool, NOT frozen M Samples may be dropped off in the office Monday - Friday 9am - 4pm, of mailed Monday - Thursday ONLY to P.O. Box 5054 * Missoula, MT 59806

.

ANALYTICAL REPORT

Montana Environmental Laboratory LLC

1170 N. Meridian Rd., P.O. Box 8900, Kalispell, MT 59904-1900 Phone: 406-755-2131 Fax: 406-257-5359 www.melab.us

Professional Consultants Professional Consultants P.O. Box 1750 Missoula, MT 59806	PWS ID: Project:	3020 MT Hwy 200, Trout Creek
Client Sample ID: Frost Free Spigot Matrix: DRINKING WATER	Collected: 04/11/2024 11:30	Lab ID: 2403345-01 Received: 04/15/2024 9:00

<u>Analyses</u>	<u>Result</u>	<u>Units</u>	<u>RL</u>	MCL	Method	Prepared	Analyzed	<u>Analyst</u>
Arsenic	ND	mg/L	0.001	0.010	E200.8		04/19/2024 16:07	BLW
Calcium	44	mg/L	1	1000	3500CA-B		04/19/2024 16:38	BLW
Chloride	1.5	mg/L	0.1	250	E300		04/16/2024 11:22	BLW
Conductivity	396	umho/cm	0.1		SM2510B		04/16/2024 14:45	BLW
Hardness	220	mg/L	1		SM2340C		04/17/2024 13:18	BLW
Iron	ND	mg/L	0.01	0.3	E200.8		04/19/2024 16:07	BLW
Magnesium	26.7	mg/L	0.1	500	E200.8		04/19/2024 16:07	BLW
Manganese	ND	mg/L	0.001	0.05	E200.8		04/19/2024 16:07	BLW
Nitrate + Nitrite, Total	0.68	mg/L	0.01	10	E353.2		04/16/2024 11:22	BLW
рН	7.94	рН	0.1		E150.1	04/15/2024	04/16/2024 14:43	BLW
Sodium	2.4	mg/L	0.1	20	E200.8		04/19/2024 16:07	BLW
Sulfate	6.3	mg/L	0.1	500	E300.0		04/16/2024 11:22	BLW

June 11, 2024

To Whom It May Concern

I, Jim Jenkins, Vice President for Administration for the Montana Conference of Seventh-day Adventist Inc, hereby authorize Maurita Crew, Teaching Principal at Trout Creek Adventist School, to sign documents specific to the construction of the new building for Trout Creek Adventist School, on behalf of the Montana Conference of Seventh-day Adventist Inc.

Should you have any questions or require further clarification, please do not hesitate to contact me at 406-414-9893 or jimjenkins@montanaadventist.org

Sincerely,

Jim Jenkins Vice President for Administration Montana Conference of Seventh-day Adventist Inc

	5.0 1.0	40	an a	2.0 18.0	1.0 1.0	Item #	Phone: 40 PO:	Contraction of	0 5458 HWY 200	S Sold To: 1391	٤ -	R
	:	9011	•			Qty Product Number	27-422		GLASS	1391	NDOW	SA
	RN BOX SHIP CSMT/AWNING SCREENS	PICTURE UNIT WINPRO SERIES, 1030 (12" x 36" RO), WHT, EC LOWE TEMP, ARGON, * 3 1/4" NAIL FIN, SUPER SPACER, *U-VALUE: .26, **SHGC-VALUE: .33 *VLT-VALUE: .61, *STC-VALUE: 27.,	BELOW PIC COMBO , DS EC LOWE, ARGON, 18" NOM. VENT, B UE: .26, ALUE: 27.,	DS EC LOWE, ARGON,	EEN, *		-9999 Phone: 406-827-4227 Fax: PO: 7TH DAY CHURCH QT	P	H S458 HWY 200	S Ship To: 1391 POOL#	V S Fax: (800) 442-8544 Fax: (866) 530-8937	10507 E. Montgomery Dr. Spokane Valley, WA 99206
		* 3 1/4" NAIL FIN,	OX SCREEN,	* 3 1/4" NAIL FIN,	3 1/4" NAIL FIN,		Territory Manager: JUD CIRIGNANO Inside Sales:	Terms: 01 - 10TH PROX	Carrier: COMMON CARRIER	Order Date: 6/04/24 Date Printed: 6/06/24	12	
 •	\$380.00	\$98.43	\$457.79	\$80.59	\$.00	Net Cacil		PROX	CARRIER	Ship Date: Del Date:	#3214406	
	\$380.00	\$196.86	\$3,204.53	\$1,450.62	\$.00	Net Externed				6/04/24 6 /06/24	06 -00	raye.